399 resultados para Soil layer
Resumo:
ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.
Resumo:
ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.
Resumo:
The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
Areas under vinasse application have been associated to favorable physical conditions for root development, aeration, infiltration and water movement in soil profile. This study aimed to evaluate changes on physical attributes of soil under sugarcane straw after vinasse application in two sugarcane growing areas (Area 1 and Area 2) under mechanized management in the state of Paraíba, Brazil. In each area, the samples were collected in the 0-0.20, 0.20-0.40 and 0.40-0.60m layers of the soil, in 36 points, distributed in a 10×10m mesh, one day before and 40 days after vinasse application. The data were submitted to multivariate analysis with repeated measures and geostatistics. The vinasse application decreased soil density and increased total porosity in both Areas and increased organic matter in Area 2. In Area 1 occurred pure nugget effect for the fractions of sand, silt and clay, independent of soil layer. In Area 2, this effect was verified mostly at superficial layers, except for the fraction of clay that presented a moderate degree of spatial dependence.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Soil plays an important role in the C cycle, and substitution of tropical forest by cultivated land affects C dynamic and stock. This study was developed in an area of expansion of human settlement in the Eastern Amazon, in Itupiranga, State of Pará, to evaluate the effects of native forest conversion to Brachiaria brizantha pasture on C contents of a dystrophic Oxisol. Soil samples were collected in areas of native forest (NF), of 8 to 10 year old secondary forest (SF), 1 to 2 year old SF (P1-2), 5 to 7 year old SF (P5-7), and of 10 to 12 year old SF (P10-12), and from under pastures, in the layers 0-2, 2-5 and 5-10 cm, to evaluate C levels and stocks and carry out separation of OM based on particle size. After deforestation, soil density increased to a depth of 5 cm, with greater increase in older pastures. Variation in C levels was greatest in the top soil layer; C contents increased with increasing pasture age. In the layers 2-5 and 5-10 cm, C content proved to be stable for the types of plant cover evaluated. Highest C concentrations were found in the silt fraction; however, C contents were highest in the clay fraction, independent of the plant cover. An increase in C associated with the sand fraction in the form of little decomposed organic residues was observed in pastures, confirming greater sensitivity of this fraction to change in soil use.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.
Resumo:
Improper land use has lead to deterioration and depletion of natural resources, as well as a significant decline in agricultural production, due to decreased soil quality. Removal of native vegetation to make way for agricultural crops, often managed inadequately, results in soil disruption, decreased nutrient availability, and decomposition of soil organic matter, making sustainable agricultural production unviable. Thus, the aim of the present study was to evaluate the impact of growing irrigated mango (over a 20 year period) on the organic carbon (OC) stocks and on the fractions of soil organic matter (SOM) in relation to the native caatinga (xeric shrubland) vegetation in the Lower São Francisco Valley region, Brazil. The study was carried out on the Boa Esperança Farm located in Petrolina, Pernambuco, Brazil. In areas under irrigated mango and native caatinga, soil samples were collected at the 0-10 and 10-20 cm depths. After preparing the soil samples, we determined the OC stocks, carbon of humic substances (fulvic acid fractions, humic acid fractions, and humin fractions), and the light and heavy SOM fractions. Growing irrigated mango resulted in higher OC stocks; higher C stocks in the fulvic acid, humic acid, and humin fractions; and higher C stocks in the heavy and light SOM fraction in comparison to nativecaatinga, especially in the uppermost soil layer.
Resumo:
The objective of this work was to evaluate the effect of organic and conventional coffee crops on biomass, population density and diversity of earthworms, in Lerroville, district of Londrina County, Paraná state, Brazil. Earthworm communities were sampled in three areas with organic coffee cultivation (CO1, CO2 and CO3), two with conventional coffee (CC1 and CC2), and a native forest fragment (MT). The soil of the areas CO1, CC1, and MT was classified as Nitossolo Vermelho (Rhodic Kandiudox), while CO2, CO3, and CC2 were on Latossolo Vermelho (Rhodic Hapludox). Eight samples were taken in each area on two occasions, winter and summer, using the Tropical Soil Biology and Fertility (TSBF) method in the 0-20 cm soil layer. The earthworms were handsorted and preserved in 4% formaldehyde, and were later weighed, counted and identified. The highest earthworm biomass, both in winter and summer, occurred in the CO3 area. For population density, the higher numbers of individuals were found in CO1 and CO3. The highest number of species was identified in the organic cultivation. The adoption of organic practices in coffee cultivation favored the diversity, density and biomass of earthworm communities.
Resumo:
In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.
Resumo:
The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.
Resumo:
After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.