37 resultados para Sodium dodecyl sulfate
Resumo:
Saponins are natural soaplike foam-forming compounds widely used in foods, cosmetic and pharmaceutical preparations. In this work foamability and foam lifetime of foams obtained from Ilex paraguariensis unripe fruits were analyzed. Polysorbate 80 and sodium dodecyl sulfate were used as reference surfactants. Aiming a better data understanding a linearized 4-parameters Weibull function was proposed. The mate hydroethanolic extract (ME) and a mate saponin enriched fraction (MSF) afforded foamability and foam lifetime comparable to the synthetic surfactants. The linearization of the Weibull equation allowed the statistical comparison of foam decay curves, improving former mathematical approaches.
Resumo:
Clay is often employed as a catalyst, but quartz impurities can decrease the catalytic efficiency. Fine particles of clay can be purified by flotation. We examined the cationic surfactant hexadecyltrimethylammonium bromide (HTAB), the anionic sodium dodecyl sulfate (SDS) and the non-ionic TRITON X-100 for separating the quartz impurities from clay. Using X-ray diffraction, the separation was monitored for changes in the peaks corresponding to clay and quartz. Cationic surfactant HTAB was most effective in separating the quartz-clay mixture and the selectivity can be explained by internal adsorption of the surfactant onto the clay and external adsorption onto the quartz.
Resumo:
A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Stability-indicating comparative methods using mekc and lc for determination of olmesartan medoxomil
Resumo:
A stability-indicating method using MEKC was validated for the analysis of olmesartan medoxomil in tablets. Successful separation was achieved using a fused silica capillary (40 cm x 50 µm i.d.); background electrolyte consisted of a combination of 10 mmol L-1 borate buffer and 5 mmol L-1 anionic detergent sodium dodecyl sulfate (95:5; v/v) pH 6.5; hydrodynamic mode at 50 mBar for 5 s; 25 kV separation voltage at 25 ºC; and column temperature 25 ºC with detection at 257 nm. The proposed method, validated following ICH guidelines, was applied to the determination of this antihypertensive with good results compared with an LC method.
Resumo:
Polystyrene/layered hydroxide salt (LHS) modified with sodium dodecyl sulfate was synthesized by in situ polymerization. The materials synthesized were characterized by gravimetry, X-ray diffraction (XRD), thermogravimetry analyses (TGA), differential scanning calorimetry (DSC) and the flammability test (FT). XRD demonstrated that synthesized nanocomposites in all compositions studied showed poor global dispersion of LHS in polystyrene. TGA showed a slight decrease in thermal stability. DSC curves showed that the glass transition temperature of polystyrene and nanocomposites were similar. The FT showed that the nanocomposite with low load of LHS exhibited good results.
Resumo:
The study aimed to identify potential biomarkers of mammary gland infection in Santa Inês sheep. Commercial flocks of sheep provided the same hygiene, sanitary, and nutritional management under semi-intensive production systems were monitored during the lactation stage-and assessed 15, 30, 60, and 90 days after delivery (through the end of lactation and weaning). The California Mastitis Test (CMT) was performed on the mammary glands. Milk was collected for bacterial examination and protein analysis. Bacterial culture and biochemical characterization of the samples were performed. Forty-two milk samples from healthy glands (negative CMT and bacterial testing) and 43 milk samples from infected glands (positive CMT and bacterial testing) taken at the predefined time points were assessed. A rennin solution was used to obtain the whey. The proteins analysis was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which allowed for the quantification of nine whey proteins produced in healthy glands: serum albumin, lactoferrin, IgA, IgG heavy-chain (IgG HC), IgG light-chain (IgG LC), total IgG (IgG HC + IgG LC), α-lactalbumin, β-lactoglobulin, protein with MW 15.000 Da, protein with MW 29.000 Da and eleven whey proteins secreted by infected glands, including haptoglobin and α-1-acid glycoprotein. A comparison of whey proteins between healthy and infected glands showed increases (P<0.05) in the secreted and total contents of all proteins, except for IgG LC and α-lactoalbumin. The most significant changes were observed in α-1-acid glycoprotein, lactoferrin and haptoglobin, which showed three-, five-, and seven-fold increases in secretion, respectively. This study showed that haptoglobin, α-1-acid glycoprotein, lactoferrin, albumin, and the IgA and IgG immunoglobulins may serve as potential biomarkers for mammary gland infection in sheep.
Resumo:
Bread-making quality is one of the most important targets in the genetic improvement of wheat. Although extensive analyses of quality traits such as farinography, sodium dodecyl sulfate (SDS) sedimentation, alveography, and baking are made in breeding programs, these analyses require high amounts of seeds which are obtained only in late generations. In this experiment the statistical correlations between the high molecular weight subunit of glutenin and bread-making quality measured by alveograph, farinograph and SDS sedimentation were evaluated. Seventeen wheat genotypes were grown under the same conditions, each producing about 1 kg of seeds for the evaluations. The high molecular weight (HMW) glutenin subunits were analyzed by SDS-PAGE. Statistical correlations were highly significant between HMW glutenin subunits and alveograph and SDS sedimentation. These results indicate the possibility of manipulating major genes for wheat seed quality by coupling traditional breeding with non-destructive single seed analysis. Only half seed is necessary to perform the SDS-PAGE analysis. Therefore, the other half seed can be planted to generate the progeny. Seed yield and SDS sedimentation were statistically correlated, indicating the possibility of simultaneous selection for both traits
Resumo:
The efficiency and reliability of radioactive fucose as a specific label for newly synthesized glycoproteins were investigated. Young adult male rabbits were injected intravitreally with [3H]-fucose, [3H]-galactose, [3H]-mannose, N-acetyl-[3H]-glucosamine or N-acetyl-[3H]-mannosamine, and killed 40 h after injection. In another series of experiments rabbits were injected with either [3H]-fucose or several tritiated amino acids and the specific activity of the vitreous proteins was determined. Vitreous samples were also processed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and histological sections of retina, ciliary body and lens (the eye components around the vitreous body) were processed for radioautography. The specific activity (counts per minute per microgram of protein) of the glycoproteins labeled with [3H]-fucose was always much higher than that of the proteins labeled with any of the other monosaccharides or any of the amino acids. There was a good correlation between the specific activity of the proteins labeled by any of the above precursors and the density of the vitreous protein bands detected by fluorography. This was also true for the silver grain density on the radioautographs of the histological sections of retina, ciliary body and lens. The contribution of radioautography (after [3H]-fucose administration) to the elucidation of the biogenesis of lysosomal and membrane glycoproteins and to the determination of the intracellular process of protein secretion was reviewed. Radioactive fucose is the precursor of choice for studying glycoprotein secretion because it is specific, efficient and practical for this purpose
Resumo:
In order to evaluate the use of a Western blot methodology for the diagnosis of infectious bursal disease virus (IBDV) infection, chickens were experimentally infected with IBDV strains and tested for the presence of viral antigens and antibodies by a blocking Western blot test (bWB). The viral proteins obtained from the bursa of Fabricius (BF) were transferred to a nitrocellulose membrane after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the chicken sera obtained by heart puncture were used for the detection of these proteins. In order to eliminate nonspecific reactions, we used a rabbit anti-chicken serum (blocking tool). By the use of the bWB test, two distinct viral proteins of 43-kDa (VP2) and 32-kDa (VP3) were detected. We suggest the use of this methodology for the detection of IBDV infection in animals suspected of having IBDV reinfection and a chronic subclinical form of the disease. With the use of the rabbit anti-chicken sera for blocking, this method is practical, sensitive and less time consuming
Resumo:
Lactic acid bacteria are important in foods as potential probiotics and also due to the ability to produce antimicrobial compounds that can contribute for biopreservation. In this work, the bacteriocin produced by the food isolate Enterococcus faecium 130 was partially purified and characterized. The compound was active against Gram-positive bacteria, including Listeria monocytogenes. It was produced after 4 days of storage at a broad temperature range (4 to 37 °C); it was stable at pH ranging from 2 to 10 with no loss of activity after heating at 100 °C for 15 minutes. Bacteriocin was partially purified by the adsorption-desorption technique, and the analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a molecular mass of 3.5 to 6.5 kDa. These data encourage studies on application of this bacteriocin in food systems as an additional hurdle to microbial growth.
Resumo:
Energy drinks are becoming popular in Brazil and in the world due to their stimulant properties. Caffeine is present in energy drinks with the aim of stimulating the central nervous system and intensifying brain activity. On the other hand, the ingestion of high doses of caffeine can cause undesirable symptoms such as anxiety and tachycardia. Therefore, it is necessary to monitor the caffeine content added to energy drinks to guarantee that the levels in the final product are in accordance with the labeling and within the legislation limits. The goal of this work was to validate a fast, efficient, and low-cost method for the determination of caffeine in energy drinks by micellar electrokinetic chromatography (MEKC). A total of seven brands were analyzed, each in three lots. The electrolyte was prepared with 50 mmol.L-1 of sodium dodecyl sulfate (SDS) and 10 mmol.L-1 of sodium carbonate (pH 11.0). The mean concentration of caffeine ranged from 122.8 to 318.6 mg.L-1. None of the brands had caffeine levels above the maximum limit. Considering the interval of confidence (95%), 72% of the samples had less caffeine than the amount informed on the product label.
Resumo:
Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1), 5 + 10 (Glu-D1), c (Glu-A3), and b (Glu-B3), with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.
Resumo:
This work reports the analysis of inorganic and organic contaminants in alcohol fuel samples using capillary electrophoresis. Chloride and sulfate were analyzed in nitrate/ monochloroacetic acid at 10 mmol L-1 concentration each under indirect UV detection (210 nm). The analysis of aldehydes is based on the 216 nm detection of 3-methyl-2-benzothiazoline hydrazone adducts. The running buffer consisted of 20 mmol L-1 tetraborate , 40 mmol L-1 sodium dodecyl sufate and 12 mmol L-1 beta-ciclodextrin. Both methodologies were applied to real samples indicating inorganic ion concentrations from 0.15 to 6.64 mg kg-1 and aldehydes from 32.0 to 91.3 mg L-1.
Resumo:
Cell surface proteins of Trypanosoma dionisii, Trypanosoma vespertilionis and Trypanosoma sp. (M238) were radiodinated and their distribution both in the detergent-poor (DPP) and dertergent-enriched phase (DRP) was studied using a phase separation technique in Triton X-114 as well as polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE). Significant differences were observed in the proteins present in the DRP when the three species of trypanosoma were compared. Two major bands with 88 and 70 KDa were observed in T. sp. (M238) but were not detectable in T. dionisii and T. vespertilionis. Three polypeptides whith 96, 77 and 60 KDa were identified in the DRP of T. vespertilionis. Three major bands with 84, 72 and 60 KDa were observed in the DRP of T. dionisii. Two polypeptides with 34-36 KDa present in the DPP, were observed in the three Trypanosome species analyzed. Our observations show that T. sp. (M238) has characteristic surface polypeptides not found in T. vespertilionis.