36 resultados para Sea-turtle
Resumo:
Eimeria jirkamoraveci sp. n. is described from faeces of two specimens of the toad-headed, side-necked turtle Batrachemys heliostemma collected at Iquitos in Peru. Oocysts are ovoid to almost spherical, 10.6 (8-12) × 8.9 (7-10) mum, without micropyle, polar granule and oocyst residuum. One conically stretched end and three blunt conical tubercles at the opposite end of oocyst give it mitra-like appearance. Sporocysts are elongated, ellipsoidal, 7.2 (6-8) × 4.1 (4-4.5) mum, with a small, knob-like Stieda body and sporocyst residuum composed of fine granules. To avoid possible conspecificity, the described new species is thoroughly compared with the most similar coccidium, E. mitraria, collected from its type host, Chinemys reevesii.
Resumo:
Heliconema hainanensis sp. nov. collected from Uroconger lepturus (Richardson) (Anguilliformes: Congridae), Muraenesox cinereus (Forsskål) and Congresox talabonoides (Bleeker) (Anguilliformes: Muraenesocidae) in the South China Sea was described using light and scanning electron microscopy. The new species differs from its congeners by the following morphology: pseudolabia, the number and arrangement of caudal papillae (4 pairs of pedunculate precloacal papillae arranged in 2 groups of 2 and 2 pairs and 6 pairs of pedunculate postcloacal papillae arranged in 4 groups of 1, 2, 1 and 2 pairs), the length of spicules [left spicule 0.51-0.69 mm, right spicule 0.20-0.27 mm, spicule (right:left) ratio 1:2.20-2.69] and the morphology of the female tail tip. In addition, specimens of the new species collected from the three different hosts and specimens of an unidentified species of Heliconema collected from U. lepturus were characterised using molecular methods by sequencing the internal transcribed spacer (ITS) of ribosomal DNA. Analyses and comparison of the ITS sequence of H. hainanensis sp. nov. with Heliconema sp. support the validity of the new species based on morphological observations. An identification key to the species of Heliconema is also provided.
Resumo:
The green turtle Chelonia mydas feeds and nests in the Brazilian coastal area and is considered an endangered species by the World Conservation Union (IUCN 2009) and threatened by the Red List of Brazilian Fauna (Ministério do Meio Ambiente 2009). Fibropapillomatosis is a disease characterized by benign skin tumors (fibropapillomas), and it is one of the main threats to the survival of this species. Studies suggest the involvement of viruses as infectious agents associated with environmental and genetic factors. Blood samples were collected from 45 turtles captured in the coastal area of the state of Sao Paulo, Brazil. From these, 27 were affected by fibropapillomas and 18 were tumor free. Biometrical data on the turtles, size, location and quantity of tumors were recorded. The area occupied by fibropapillomas per animal was calculated and four groups were determined according to severity of the disease or its absence. The objective of the study was to compare hemogram results of the sea turtles classified in these four groups. The lowest hematocrit value was observed in severely affected animals. In the hemoglobin assay, the highest value was observed in the group of tumor free turtles and the lowest, in animals severely affected. Lymphocyte counts and curved carapace length were on the verge of statistical significance.
Resumo:
The swear turtle "jurará" (Kinosternon scorpioides) is a mud turtle of the Amazon region exposed to disordering capture in the rural areas of Maranhão, Brazil. Despite its popularity in these areas, little meaningful information regarding the reproductive morphology is currently available, fact that impedes the adoption of policies for preservation of the species. To obtain more information, we studied the ovarian morphology adult jurará females kept in captivity by morphological and morphometric analysis in the dry and rainy season. The results revealed that all females were sexually mature and were in a vitellogenic period. The ovaries are two irregular structures composed by follicles in different stages of development (primary, secondary and tertiary) scattered in a stroma of loose connective highly vascularized tissue. The ovary weight was 6.25±4.23g and 2.27±1.42g, for the right and left one respectively. The gonadosomatic indexes were 2.06% for the dry season and 1.79% for the rainy season. The average of the follicles was 29.83 units per ovary. Microscopically, the mature ovaries revealed a basal layer composed by four cellular layers: the inner and outer theca, stratum granulosum with perivitelline membrane and zona radiata with vitelline membrane. No significant differences were observed in the ovaries either in the dry or wet period.
Resumo:
The metabolic responses of adult and young freshwater Kinosternon scorpioides turtles raised in captivity were evaluated. Two experiments were performed: a) blood metabolite changes caused by food deprivation, and b) liver and muscle glycogen and total lipid differences after fasting and refeeding. Blood glucose concentration of young animals was susceptible to food deprivation. In both groups this metabolite decreased after 30 days of fasting. Feeding for 15 days did not recover blood glucose. Total seric proteins were not affected by food deprivation. Fasting decreased blood urea nitrogen and the highest difference was found around 30 days. Uric acid increased in young animals after 60 days of fasting. Triacylglicerol decreased after 15 days of fasting and refeeding for 15 days recovered the pre-fasting levels. Free fatty acid plasma tended to increase around 15 days of fasting. Liver glycogen decreased at day 15 of fasting, being stable thereafter while muscle glycogen decreased at a slower rate. Total liver lipid stabilized after 30 days and then decreased 70% after 60 days of fasting. Muscle lipids remained stable throughout fasting. It could be concluded that fasting of Kinosternon scorpioides led to metabolic adaptations similar to the one reported from reptiles and fish.
Resumo:
The transferrin gene locus (Tf) was investigated in five populations of the Amazon turtle (Podocnemis expansa) sampled from five geographical areas in the Amazon region. This locus was polymorphic, showing three genotypes (Tfª Tfª, Tfª Tf b and Tf b Tf b), presumably encoded by two co-dominant alleles, Tfª and Tf b. All populations showed good genetic balance according to Hardy-Weinberg expectations, and may sustain the hypothesis of a single stock in the area investigated. The data are consistent with free flow of genes among the population samples examined.
Resumo:
The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed
Resumo:
The antimicrobial, hemagglutinating and toxic activities of the purple fluid of the sea hare Aplysia dactylomela are described. Intact or dialyzed purple fluid inhibited the growth of species of Gram-positive and Gram-negative bacteria and the action was not bactericidal but bacteriostatic. The active factor or factors were heat labile and sensitive to extreme pH values. The fluid preferentially agglutinated rabbit erythrocytes and, to a lesser extent, human blood cells, and this activity was inhibited by the glycoprotein fetuin, a fact suggesting the presence of a lectin. The fluid was also toxic to brine shrimp nauplii (LD50 141.25 µg protein/ml) and to mice injected intraperitoneally (LD50 201.8 ± 8.6 mg protein/kg), in a dose-dependent fashion. These toxic activities were abolished when the fluid was heated. Taken together, the data suggest that the activities of the purple fluid are due primarily to substance(s) of a protein nature which may be involved in the chemical defense mechanism of this sea hare.
Resumo:
The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK) by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.
Resumo:
A neurotoxic peptide, granulitoxin (GRX), was isolated from the sea anemone Bunodosoma granulifera. The N-terminal amino acid sequence of GRX is AKTGILDSDGPTVAGNSLSGT and its molecular mass is 4958 Da by electrospray mass spectrometry. This sequence presents a partial degree of homology with other toxins from sea anemones such as Bunodosoma caissarum, Anthopleura fuscoviridis and Anemonia sulcata. However, important differences were found: the first six amino acids of the sequence are different, Arg-14 was replaced by Ala and no cysteine residues were present in the partial sequence, while two cysteine residues were present in the first 21 amino acids of other toxins described above. Purified GRX injected ip (800 µg/kg) into mice produced severe neurotoxic effects such as circular movements, aggressive behavior, dyspnea, tonic-clonic convulsion and death. The 2-h LD50 of GRX was 400 ± 83 µg/kg.
Resumo:
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.
Resumo:
In this study, the behavioral and electroencephalographic (EEG) analysis of seizures induced by the intrahippocampal injection in rats of granulitoxin, a neurotoxic peptide from the sea anemone Bunodosoma granulifera, was determined. The first alterations occurred during microinjection of granulitoxin (8 µg) into the dorsal hippocampus and consisted of seizure activity that began in the hippocampus and spread rapidly to the occipital cortex. This activity lasted 20-30 s, and during this period the rats presented immobility. During the first 40-50 min after its administration, three to four other similar short EEG seizure periods occurred and the rats presented the following behavioral alterations: akinesia, facial automatisms, head tremor, salivation, rearing, jumping, barrel-rolling, wet dog shakes and forelimb clonic movements. Within 40-50 min, the status epilepticus was established and lasted 8-12 h. These results are similar to those observed in the acute phase of the pilocarpine model of temporal lobe epilepsy and suggest that granulitoxin may be a useful tool not only to study the sodium channels, but also to develop a new experimental model of status epilepticus.
Resumo:
Sea anemones are a rich source of biologically active substances. In crayfish muscle fibers, Bunodosoma cangicum whole venom selectively blocks the I K(Ca) currents. In the present study, we report for the first time powerful hemolytic and neuroactive effects present in two different fractions obtained by gel-filtration chromatography from whole venom of B. cangicum. A cytolytic fraction (Bcg-2) with components of molecular mass ranging from 8 to 18 kDa elicited hemolysis of mouse erythrocytes with an EC50 = 14 µg/ml and a maximum dose of 22 µg/ml. The effects of the neuroactive fraction, Bcg-3 (2 to 5 kDa), were studied on isolated crab nerves. This fraction prolonged the compound action potentials by increasing their duration and rise time in a dose-dependent manner. This effect was evident after the washout of the preparation, suggesting the existence of a reversible substance that was initially masking the effects of an irreversible one. In order to elucidate the target of Bcg-3 action, the fraction was applied to a tetraethylammonium-pretreated preparation. An additional increase in action potential duration was observed, suggesting a blockade of a different population of K+ channels or of tetraethylammonium-insensitive channels. Also, tetrodotoxin could not block the action potentials in a Bcg-3-pretreated preparation, suggesting a possible interaction of Bcg-3 with Na+ channels. The present data suggest that B. cangicum venom contains at least two bioactive fractions whose activity on cell membranes seems to differ from the I K(Ca) blockade described previously.
Resumo:
Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.
Resumo:
Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) µg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) µg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.