35 resultados para SULFIDE PHOSPHORS
Resumo:
Copper speciation and behavior in different rivers located in the city of Curitiba were evaluated in this work. Sampling locations were selected to cover different levels of urbanization regarding their anthropogenic occupation and land use. Results showed that in highly-developed areas, both organic matter and dissolved sulfides were able to control copper speciation. Dissolved sulfide species were the major complexing agent in areas where dissolved oxygen levels are low. Finally, it was demonstrated that in urban areas anthropogenic factors such as sewage inputs and occupation of the drainage basin are the key aspects controlling copper dynamics and speciation in river waters.
Resumo:
This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample.
Resumo:
The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
Sediment samples from Tietê river were submitted to chemical and sequential extractions of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn). It was followed a single extraction by using 0.1 mol L-1 hydrochloric acid and a sequential procedure to evaluate possible chemical associations described as exchangeable, carbonate, reducible oxides, sulfide, organic matter and residual fractions. High concentrations of heavy metals were determined at Pirapora reservoir, which is closer to the Metropolitan Area of São Paulo while for Barra Bonita reservoir, the results showed low concentrations for such elements. Acid volatile sulfides, grain size distribution and carbon contents were also determined.
Resumo:
Measurements of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) were combined in order to verify the ecological hazard of contaminated sediments from the Santos-Cubatão Estuarine System (SE Brazil), which is located in one of the most industrialized areas in the Latin America. Intertidal sediments from the Morrão River estuary were collected seasonally in short cores. The redox conditions, organic matter contents and grain-size were the main controlling factors on SEM distribution. However, clear relationships among these variables and AVS were not observed. The molar SEM/AVS ratios were frequently > 1 especially in the summer, suggesting major metal bioavailability hazard in this humid hot season.
Resumo:
The AVS is defined operationally as acid volatile sulfide, which is a controlling phase on the partition of some metallic species in sediments. A Factorial design was evaluated by means of 16 experiments and using four variables: temperature, extraction time, N2 flow, and volume of the S2- collection solution. The factors that contributed to the efficiency of the process were the extraction time and the N2 flow. Trapping of S2- was efficient in AAB. The S2- was quantified using a potentiometric procedure. Recovery tests for S2- concentrations varying from 1×10-5 to 1×10-4 mol L-1 were in the range from 93 to 116%.
Resumo:
This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.
Resumo:
The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1) was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4) MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.
Resumo:
In this work a sulfide quantification protocol using voltammetric methods was developed to evaluate the effect of dissolved sulfides on copper complexation. On the basis of pH, sulfide release from the dissociation of specific metal sulfide complexes can be electrochemically measured and then removed (as H2S) by a N2 purge. Cathodic stripping square wave voltammetry (CSSWV) was conducted to quantify Cu sulfides complexes which dissociate at pH < 5.0 during the process of acid titration.
Resumo:
The solubility of sulfides is discussed in this article based on the factors that can influence this property, such as predominant type of chemical bonds and structures formed in many compounds. For soluble sulfides, considerations are made on the thermodynamic parameters and the acid-base equilibrium, since the sulfide anion is extensively hydrolyzed in aqueous solutions. On the other hand, for the insoluble sulfides, the discussion concerned the influence of structural factors that will be determinant for the low solubility.
Resumo:
In this work is presented a versatile system for X-ray excited optical luminescence (XEOL) measurements. The apparatus was assembled from a sample holder connected to an optical fiber responsibly for the acquisition of the scintillation signal. The spectrum is registered with a CCD coupled in a spectrograph provided with diffraction gratings. The system performance was analyzed by exciting GdAlO3:Eu3+ 3.0 at.% with X-rays from a diffractometer and measuring the emission spectra. The system can be used to obtain precise and reliable spectroscopic properties of samples with various conformations without the loss of the required safety when dealing with ionizing radiations.
Resumo:
This paper discusses the historical and methodological fundaments of the dynamics and quantification of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in aquatic sediments. It also discusses the SEM/AVS relationship, which involves several controversial aspects such as sulfide stability, sulfide-organic matter interaction, and the inability to predict the toxicity of organic compounds in the environment. This relationship is an important tool for the inference of metal bioavailability. The use of ecotoxicological tests with target organisms regulated by international standards is also a relevant aspect.
Resumo:
Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
This work examines traditional and new routes for removal of H2S and other sulfur compounds from spent sufidic caustic (SSC). SH- (hydrogenosulfide) and S2- (sulfide) ions were quantitatively oxidized at 25 ºC using H2O2, NaOCl or a spent sulfochromic mixture. SH-/S2- ions were also removed via reaction with freshly prepared iron or manganese hydroxides, or after passing the SSC through strong basic anion exchange resins (OH- form). The treated caustic solution, as well as iron/manganese hydroxides, removed H2S from diesel samples at 25 ºC. SSC treatment via strong basic anion-exchange resins produced the treated caustic solution with the highest free alkalinity.