83 resultados para STOMATAL CONDUCTANCE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol), besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the root system distribution and the yield of 'Conilon' coffee (Coffea canephora) propagated by seeds or cuttings. The experiment was carried out with 2x1 m spacing, in an Oxisol with sandy clay loam texture. A randomized complete block design was used, following a 2x9x6 factorial arrangement, with two propagation methods (seeds and cuttings), nine sampling spacings (0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 m between rows, and 0.15, 0.30, and 0.45 between plants within rows), six soil depths (0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50, and 0.50-0.60 m), and six replicates. Soil cores (27 cm3) with roots were taken from 12 experimental units, 146 months after planting. The surface area of the root system and root diameter, length, and volume were assessed for 13 years and, then, correlated with grain yield. The highest fine root concentration occurred at the superficial soil layers. The variables used to characterize the root system did not differ between propagation methods. Moreover, no differences were observed for net photosynthetic CO2 assimilation rate, stomatal conductance, internal CO2 concentrations, and instantaneous water-use efficiency in the leaves. Cutting-propagated plants were more productive than seed-propagated ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research, was used four papaya (Carica papaya L.) genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália) group and one from the 'Formosa' group (Know-You 01). They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 ), stomatal conductance (g s mol m-2 s-1), leaf temperature (T I, 0C) and intercellular carbon dioxide concentration (ci, muL L-1) on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1), the leaf temperature (Tleaf, ºC), the CO2 assimilation (A, μmol m-2 s-1), the stomatal conductance (g s, mol m-2 s-1), the transpiration (E, mmol m-2 s-1) and the intercellular CO2 concentration (Ci, μmol mol-1) were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.). A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99), indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Araticum-de-terra-fria" (Annona emarginata (Schltdl.) H. Rainer) has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I) of the complete nutrient solution Hoagland and Arnon (1950) nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency); Vegetative growth characteristics (diameter, leaf number, dry matter); Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio) and Ionic Accumulation (nutrients leaf analysis). Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950) nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study assessed growth and physiological parameters of 'Sunrise Golden' and 'Tainung 01' papaya seedlings grown in 280mL plastic tubes and watered using a low-cost automatic irrigation system adjusted to operate at substrate water tension for starting irrigation (STI) of 3.0, 6.0 or 9.0 kPa. The water depths applied by the dripping system and drainage were monitored during germination and seedling growth. Germination, emergence velocity index (EVI), leaf area, plant height, shoot and root dry weight, stomatal conductance, relative water content (RWC) and relative chlorophyll content (RCC) were evaluated. Soil nutrient levels were determined by electrical conductivity (EC). Water use efficiency (WUE) corresponded to the ratio of plant dry mass to depth of water applied. STI settings did not affect papaya germination or EVI. System configuration to 3.0 and 6.0 kPa STI exhibited the highest drainage and lowest EC and RCC, indicating soil nutrient loss and plant nutrient deficiency. Drainage was greater in tubes planted with the 'Tainung 01' variety, which developed smaller root systems and lower stomatal conductance than 'Sunrise Golden' seedlings. The highest values for shoot dry weight and WEU were obtained at 6.0 kPa STI for 'Sunrise Golden' (0.62 g and 0.69 g L-1) and at 9.0 kPa in 'Tainung 01' (0.35 g and 0.82 g L-1). RWC at 9.0 kPa STI was lower than at 3.0 kPa in both varieties. The results indicate that the low-cost technology developed for irrigation automation is promising. Even so, new studies are needed to evaluate low-flow irrigation systems as well as the nutrient and water needs of different papaya varieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT The Paratudo (Tabebuia aurea) is a species occurring in the Pantanal of Miranda, Mato Grosso do Sul, Brazil, an area characterized by seasonal flooding. To evaluate the tolerance of this plant to flooding, plants aged four months were grown in flooded soil and in non-flooded soil (control group). Stomatal conductance, transpiration and CO2 assimilation were measured during the stress (48 days) and recovery (11 days) period, totalling 59 days. The values of stomatal conductance of the control group and stressed plants at the beginning of the flooded were 0.33 mol m-2s-1 and reached 0.02 mol m-2 s-1 (46th day) at the end of this event. For the transpiration parameter, the initial rate was 3.1 mol m s-1, and the final rate reached 0.2 or 0.3 mol m-2 s-1 (47/48 th day). The initial photosynthesis rate was 8.9 mmol m-2s-1 and oscillated after the sixth day, and the rate reached zero on the 48th day. When the photosynthesis rate reached zero, the potted plants were dried, and the rate was analyzed (11th day). The following values were obtained for dried plants: stomatal conductance = 0.26 mol m-2 s-1, transpiration rate = 2.5 mol m-2 s-1 and photosynthesis rate = 7.8 mmol m-2 s-1. Flooded soil reduced photosynthesis and stomatal conductance, leading to the hypertrophy of the lenticels. These parameters recovered and after this period, and plants exhibited tolerance to flooding stress by reducing their physiological activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was carried out to determine some physiological and phenological responses of the bean under high [CO2] and drought stress. The experiment was conducted from April to July 2009 in Viçosa, Brazil. The open-top chambers were used to enrich the air with CO2, whereas the drought stress was applied between the flowering and the ripening. The randomized block design was used, with four replicates in the subplots. The following plots were [CO2] at 700ppm (F1) and [CO2] environmental (F2) and the subplots were well watering (S1) and drought stress (S2). The results were subjected to Anova and the Tukey test (P < 0.05). For the treatments F1S1 and F1S2 the photosynthetic rate showed increments of 59% and the transpiration reduction of 12%. The yield, leaf temperature and stomatal conductance were not significant different to high [CO2], different from the dry matter, who showed increment of 20% (F1S1) and the water use efficiency who showed increase of 90% for high [CO2]. The osmotic potential was lower in plants under drought stress (F2S2 and F1S2), followed by plants under high [CO2] (F1S1). Despite the increment in photosynthesis, high [CO2] does not guarantee higher yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of herbicides, even in tolerant crops, can cause stress evidenced by increase phytotoxicity affecting growth and development. The objectives of this study were to evaluate herbicides effect from different mechanisms of action in photosynthetic and oxidative stress parameters, as well visual phytotoxicity and wild radish control in wheat crop, cultivar Quartzo. Two trials were conducted where the first one evaluated the photosynthetic parameters on wheat plants in two seasons collection, following the application of herbicides bentazon, clodinafop, iodosulfuron, metribuzin, metsulfuron and 2,4-D; and the second one evaluated wild radish (Raphanus sativus) control, wheat phytotoxicity and yield due to bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D herbicides application. Photosynthetic rate, stomatal conductance and transpiration were negatively affected by metribuzin, metsulfuron and 2,4-D herbicides at 24 and 120 HAS (hours after spraying) compared to control. Oxidative stress was similar or lower to control, when herbicide was applied and, in general, there was no difference between application times. Lipid peroxidation, catalase activity and phenols were higher in the first collection time. The application of herbicides iodosulfuron and 2,4-D reduces chlorophylls and carotenoids in wheat. Herbicides bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D are selective to wheat, cultivar Quartzo and do not affect wheat yield. 2,4-D, metribuzin and iodosulfuron are more efficient for wild radish control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate leaf epidermis morphological characteristics of three citrus somatic hybrids, compared to their parents. Parental and somatic hybrid young leaves were collected and processed for scanning electron microscope observations. Citrus polyploid hybrids have fewer stomata per area and these are larger compared to their diploid parental parents. No differences in internal arrangement of the stomatal cells were detected between parental plants and somatic hybrids. Additional studies may determine if these differences will influence physiological behavior of the plants in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs).