81 resultados para SOIL MICROBIAL COMMUNITY
Resumo:
ABSTRACT Swine wastewater (SW) application in agricultural soils may affect its microbial community in a long term. The objective of this study was to evaluate prospective changes in soil bacterial community after eight years continuous application of swine wastewater. The wastewater doses tested were 0; 100; 200 and 300 m3 ha-1, being applied from the beginning of the experiment and with or without recommended fertilization. Three soil samples were taken from each plot for determinations of basal respiration, microbial biomass and metabolic quotient. We also performed DGGE analysis and made a correlation between soil chemical conditions and microbial activity. Microbial community underwent significant structural changes from swine wastewater applications. Higher SW doses (200 and 300 m3 ha-1) influenced significantly (p <0.05) and benefitted certain bacteria groups.
Resumo:
Soil is a very heterogeneous environment that allows the establishment of wide range of microorganisms populations, whose balance is affected by biotic and abiotic factors. This study has aimed to assess the effect of doses of mesotrione and fluazifop-p-butyl herbicides and two assessment periods on microbial activity and biomass of soil cultivated with cassava Cacau-UFV cultivar, besides the root colonization by arbuscular mycorrhizal fungi. Two trials were conducted in a protected environment where was realized post-emergence application of mesotrione in the doses of 72, 108, 144 and 216 g ha-1 and fluazifop-p-butyl in the doses of 100, 150, 200 and 300 g ha-1, besides a control without application. Soil samples were collected for determination of soil respiratory rate (RR), microbial biomass carbon (MBC), metabolic quotient (qCO2), and colonization of roots by arbuscular mycorrhizal fungi at the 30 and 60 days after applications (DAA) of the herbicides. Fluazifop-p-butyl increased the RR, MBC and the percentage of cassava roots colonized by mycorrhizal fungi in the assessment performed at 60 DAA. The larger effects of mesotrione on soil microbial indicators were up to 30 DAA, being the changes minimized at 60 DAA. It is concluded that the herbicides alter the soil microbial indicators, with effects dependent of the product, of dose applied and also of the period of assessment.
Resumo:
The present essay is meant to provide some background on the evolution of the soil science community in Brazil, since its inception, to describe its current situation, and to outline a number of opportunities and challenges facing the discipline in decades to come. The origin of Brazilian agronomy dates back to the beginning of the 19th century as a subdiscipline of botany, and its association with chemistry would later establish it as a science. In the middle of the 19th century, agricultural chemistry was born as a result of this association, leading to the establishment of edaphology, a branch of Soil Science. Another branch of Soil Science, known as pedology, was established as an applied and scientific knowledge in Brazil during the middle of the 20th century. During the same period, the Brazilian Soil Science Society (SBCS) was created, merging the knowledge of both branches and gathering all scientists involved. Twenty years after the SBCS foundation, the creation of Graduate Programs made Brazilian Soil Science enter the modern era, generating crucial knowledge to reach the current levels of agricultural productivity. Part of a community composed of 25 Soil Departments, 15 Graduate Programs and a great number of institutions that promote research and technology transfer, Brazilian soil scientists are responsible for developing solutions for sustainable development, by generating, adapting and transferring technology to the benefit of the country. The knowledge produced by SBCS members has been particularly significant for Brazil to achieve the status of most competitive tropical agriculture in the world. In the future decades, Soil Science will still remain topical in discussions regarding environment care and production of food and fibers, in addition, it will be essential and strategic for certain issues, such as water quality, reducing poverty and development of renewable sources of energy.
Resumo:
The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.
Resumo:
An understanding of the role of organic nitrogen (N) pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years). Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N); Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance) was defined as the difference between the initial soil N pool (0-10 cm) and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.
Resumo:
The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest). The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively). In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa) in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively). Of all forest stands, the mimosa area had the most abundant soil fauna.
Resumo:
The application of sewage sludge is a concern because it may affect the quality of organic matter and microbiological and biochemical soil properties. The effects of surface application of sewage sludge to an agricultural soil (at 18 and 36 t ha-1 dry basis) were assessed in one maize (Zea mays L.) growing season. The study evaluated microbial biomass, basal respiration and selected enzymatic activities (catalase, urease, acid and alkaline phosphatase, and β-glucosidase) 230 days after sewage sludge application and infrared spectroscopy was used to assess the quality of dissolved organic matter and humic acids. Sewage sludge applications increased the band intensity assigned to polysaccharides, carboxylic acids, amides and lignin groups in the soil. The organic matter from the sewage sludge had a significant influence on the soil microbial biomass; nevertheless, at the end of the experiment the equilibrium of the soil microbial biomass (defined as microbial metabolic quotient, qCO2) was recovered. Soil urease, acid and alkaline phosphatase activity were strongly influenced by sewage sludge applications.
Resumo:
Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high.
Resumo:
ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.
Resumo:
The objective of this work was to assess the effect of different coffee organic cultivation systems on chemical and biological soil characteristics, in different seasons of the year. The following systems were evaluated: coffee intercropped with one (CJ1), two (CJ2) or three (CJ3) pigeon pea (Cajanus cajan) alleys; coffee planted under full sun (CS); area planted with sweet pepper and snap bean in a conventional tillage system (AC); and secondary forest area (FFR). Row spacing in CJ1, CJ2, CJ3 and CS was 2.0x1.0, 2.8x1.0, 3.6x1.0, and 2.8x1.0 m, respectively. Soil samples were collected at 10-cm depth, during the four seasons of the year. The results were subjected to analysis of variance, principal component analysis, and redundancy analysis. There was an increase in edaphic macrofauna, soil basal respiration, and microbial quotient in the summer. Total macrofauna density was greater in CJ2 followed by CJ3, CS, CJ1, AC and FFR; Coleoptera, Formicidae, and Isoptera were the most abundant groups. There are no significant differences among the areas for soil basal respiration, and the metabolic quotient is higher in CJ1, CJ3, and FFR. Microbial biomass carbon and the contents of K, pH, Ca+Mg, and P show greater values in AC.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.
Resumo:
The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC). Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM) decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.
Resumo:
Transgenic soybean, resistant to glyphosate, is the most dominant transgenic crop grown commercially in the world. Research works on herbicide and insecticide mixtures and their effects on microorganisms are rarely reported. This work aimed to study the impact of glyphosate, endosulfan and their mixtures on the microbial soil activity in soybean crop. The experiment was carried out in a complete randomized block design with four treatments and five replications. The treatments were glyphosate 480 SL [540 g of active ingredient (a.i.) ha-1], endosulfan 350 EC (525 g a.i. ha-1), the glyphosate 480 SL [540 g of active ingredient (a.i.) ha-1] mixed with endosulfan 350 EC (525 g a.i. ha-1) and the control. Microbial activity was evaluated five days after treatment application. Glyphosate application was not an impacting factor for soil CO2 production. Endosulfan application (alone or mixed with glyphosate) suppressed CO2 production by microorganisms in the soil. Microbial biomass and microbial quotient were lower in the treatments using endosulfan alone and in those using endosulfan mixed with glyphosate than in the treatments using glyphosate alone and control.
Resumo:
Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR), Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC), metabolic quotient (qCO2), and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.
Resumo:
Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.