68 resultados para SAP R3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacta-mon, produced by Bacta-mon S. A., São Paulo, Brazil, is recommended as a microbiological, and suggested as a supplement for animal rations. This experiment deals with this product in chicken feeding. Four lots of baby chicken received, during 6 weeks the following treatments: a control ration Rl; a ration R2 containing 10 per cent of wheat standard middlings fermented by Bacta-mon, substituting equal weight of wheat standard middlings of the control ration Rl; two rations R3 and R4, both without meat meal and containing 10 per cent of wheat standard middlings fermented respectively by Bactamon and fresh cow manure, substituting equal weight of wheat standard middlings of the control. The results may be so summarized: (1) On the basis of the weights of the chicks at 6 weeks age, we concluded that there was not any advantage in the addition of the wheat standard middlings fermented by Bacta-mon. (2) The rations R3 and R4 were considered statistically equivalents and lower the control ration Rl. (3) It seems that the main difference observed in these results may be atributed to lack of animal protein. (4) The highest mortality and the lowest consumption of feed by the lots receiving ration R3 and R4, seem to indicate, in addition, that this prejudice was due the lack of animal protein and the unpalatability of these rations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization of the xanthine oxidase (X.O.) and xanthine dehydrogenase (X.D.) activities in rat liver have been studied using separation of cytoplasmic particles into fractions by differential centrifugation. The results clearly demonstrate that practically all the enzymic activity is present in the supernatant fluid corresponding to the cell sap containing the soluble proteins of the cell. No activity could be detected for the nuclear, mitocondrial and microsomal fractions. The enzymatic activity of the mixture of the four factions was 102 per cent of that of the original homogenate. The distribution of the xanthine dehydrogenase in the protein fractions of the rat serum was accomplished in preliminary experiments by means of 50% ammonium sulphate precipitation and subsequent dialysis against water. All enzymatic activity was confined to the globulin fractions of the serum. Paper electrophoresis was performed and the protein and lipoprotein fractions determined. A method for the localization of the X.D. activity in the protein fractions separated by paper electrophoresis was developed. The results obtained suggest that xanthine dehydrogenase is localized in the globulin fractions possessing mobilities of [alpha 1], [beta] and [gamma] globulins and are probably bound to the lipoproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspartyl proteases are a class of enzymes that include the yeast aspartyl proteases and secreted aspartyl protease (Sap) superfamilies. Several Sap superfamily members have been demonstrated or suggested as virulence factors in opportunistic pathogens of the genus Candida. Candida albicans, Candida tropicalis, Candida dubliniensis and Candida parapsilosis harbour 10, four, eight and three SAP genes, respectively. In this work, genome mining and phylogenetic analyses revealed the presence of new members of the Sap superfamily in C. tropicalis (8), Candida guilliermondii (8), C. parapsilosis(11) and Candida lusitaniae (3). A total of 12 Sap families, containing proteins with at least 50% similarity, were discovered in opportunistic, pathogenic Candida spp. In several Sap families, at least two subfamilies or orthologous groups were identified, each defined by > 90% sequence similitude, functional similarity and synteny among its members. No new members of previously described Sap families were found in a Candida spp. clinical strain collection; however, the universality of SAPT gene distribution among C. tropicalis strains was demonstrated. In addition, several features of opportunistic pathogenic Candida species, such as gene duplications and inversions, similitude, synteny, putative transcription factor binding sites and genome traits of SAP gene superfamily were described in a molecular evolutionary context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restriction fragment length polymorphism (RFLP) analysis of a PCR-amplified fragment of the 16S rRNA gene was performed on reference strains belonging to 21 different enterococcal species and on 75 Enterococcus isolates recovered from poultry meat, pasteurised milk and fresh cheese. PCR amplification generated a 275 bp fragment, which was digested with three restriction endonucleases (DdeI, HaeIII, HinfI). The strains were divided into five groups (groups A-E) on the basis of their restriction patterns. Five biochemical tests (arabinose, arginine, manitol, methyl-β-D-glucopyranoside and raffinose) were then performed in addition to RFLP analysis to narrow the identification of enterococcal strains to the species level. PCR-RFLP, in conjunction with the selected biochemical tests, allowed the precise identification of the 21 species of Enterococcus included in the present study. This proposed method is relatively simple and rapid and can be useful as an adjunct tool for accurate identification of Enterococcus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100% of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, analisa-se o nível de institucionalização sob a ótica da Estratégia como Prática (Strategy-As-Practice - SAP), adotando a teoria institucional como perspectiva de análise. Por meio de pesquisa bibliográfica, bibliométrica e sociométrica, analisaram-se 24 estudos publicados no Brasil e 76 no exterior. Os elementos analisados foram: número de artigos publicados em cada ano; obras e autores mais citados; autores que mais publicaram; redes de cooperação entre autores e entre instituições, com o auxílio do software UCINET® 6; abrangência geográfica das parcerias; e enfoques de SAP empregados por meio de análise de conteúdo. Como principais resultados, destacam-se a defasagem entre as primeiras publicações na literatura internacional e na brasileira e os autores mais citados, que são Whittington e Jarzabkowski. A constatação de que 14 diferentes países publicaram artigos sobre SAP aponta sua dispersão geográfica e também seu alinhamento com outras abordagens. No Brasil, apesar do número crescente de artigos publicados e da criação de temas em eventos, ainda há grande espaço para crescimento no número de artigos, nas redes de cooperação e nos enfoques pesquisados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron deficiency causes large productivity losses in eucalypt stands in extensive areas of the Brazilian Cerrado region, thus understanding B mobility is a key step in selecting genetic materials that will better withstand B limitation. Thus, in this study B mobility was evaluated in two eucalypt clones (68 and 129), under B sufficiency or B deficiency, after foliar application of the 10B isotope tracer to a single mature leaf. Samples of young tissue, mature leaves and roots were collected 0, 1, 5, 12 and 17 days after 10B application. The 10B:11B isotope ratio was determined by HR-ICP-MS. Samples of leaves and xylem sap were collected for the determination of soluble sugars and polyalcohols by ion chromatography. Boron was translocated within eucalypt. Translocation of foliar-applied 10B to the young tissues, mature leaves and roots was higher in clone 129 than in 68. Seventeen days after 10B application to a single mature leaf, between 14 and 18 % of B in the young tissue was originated from foliar B application. In plants with adequate B supply the element was not translocated out of the labeled leaf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Organic acids present in organic matter and, or, exudates by microorganisms and plants can increase the liberation of potassium present in minerals. The objective of this study was to characterize the residue from ornamental rocks and evaluate the release of K from these residues after the application of organic acids. The experiment was conducted under laboratory conditions and followed a 2 × 3 × 5 factorial design with three replicates. The studied factors were: two organic acids (citric acid and malic acid), three ornamental rock residues (R1, R2 and R3) and five organic acid rates (0, 5, 10, 20 and 40 mmol L-1). After agitation, K concentrations were determined in the equilibrium solution. Successive extractions were performed (1, 5, 10, 15, 30 and 60 days after the start of the experiment). The organic acids used (citric and malic) promoted the release of up to 4.86 and 4.34 % of the total K contained in the residue, respectively, reinforcing the role of organic acids in the weathering of minerals and in providing K to the soil. The K quantities were, on average, 6.1 % higher when extracted with citric acid compared to malic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi obter calos e embriões somáticos de couve-comum (Brassica oleracea L., var. leucocephala) e caracterizá-los por meio de observações histológicas. Foram cultivadas, in vitro, explantes foliares, sob condições assépticas, em meio nutritivo MS, suplementado com várias combinações entre 2,4-D/BAP e 2,4-D/KIN. Na fase de indução de calos (fase I), houve o desenvolvimento de calos com características embriogênicas nos meios suplementados com 5,0 mg/L de 2,4-D; 1,0 mg/L de 2,4-D e 0,1 mg/L de BAP; 1,0 mg/L de 2,4-D e 1,0 mg/L de BAP e 2,0 mg/L de 2,4-D e 0,05 mg/L de BAP, que foram selecionados para o subcultivo em meio de regeneração (fase II). Nesta fase, foram utilizados meios de cultura suplementados com reduzidas concentrações de 2,4-D, BAP e AG3, ou totalmente desprovidos destes, em que os calos permaneceram por mais 30 dias em cultivo. Os calos subcultivados nos meios de regeneração com 0,1 mg/L de BAP (R3) e 0,01 e 0,001 mg/L de BAP e 2,4-D respectivamente (R8), provenientes dos meios para indução, acrescidos de 5,0 mg/L de 2,4-D (M16) e 1,0 e 1,0 mg/L de BAP e 2,4-D (M30), desenvolveram estruturas semelhantes a embriões. No entanto, a caracterização histológica revelou a superioridade da interação entre os meios M30 e R8, para a regeneração de calos e embriões somáticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi identificar os efeitos de sistemas de preparo do solo e de rotações de culturas sobre o rendimento de grãos e economicidade da cultura do feijoeiro (Phaseolus vulgaris L.) irrigado pelo sistema pivô central. O trabalho foi conduzido durante seis anos consecutivos, na Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, localizado no Município de Santo Antônio de Goiás, GO, em Latossolo Vermelho-Escuro, de textura argilosa. O experimento consistiu de um fatorial 4 x 6, em delineamento inteiramente casualizado, com parcelas subdivididas. Os sistemas de preparo do solo foram: P1 arado de aiveca (novembro-dezembro) alternado com grade aradora (maio-junho); P2 arado de aiveca contínuo; P3 grade aradora contínua; P4 plantio direto; e as rotações de culturas: R1 arroz-feijão; R2 milho-feijão; R3 soja-trigo, R4 soja-trigo-soja-feijão-arroz-feijão; R5 arroz consorciado com calopogônio-feijão; e R6 milho-feijão-milho-feijão-arroz -feijão. As rotações R1, R2, R3 e R5 foram anuais, e as R4 e R6, trienais. Neste trabalho analisaram-se somente as rotações que continham feijão. O arroz, o milho e a soja foram semeados em novembro-dezembro (verão), e o feijão e o trigo, em maio-junho (inverno). Houve efeito do preparo do solo e das rotações de cultura sobre o rendimento de grãos do feijoeiro. A cultura produziu mais quando se utilizou no preparo do solo a combinação de arado de aiveca, nos cultivos de verão, e grade aradora nos de inverno. Os rendimentos do feijoeiro foram maiores quando a cultura foi implantada bienalmente na mesma área, nas rotações com arroz/calopogônio e arroz, e menores, nas rotações com milho. O feijoeiro irrigado, com relação ao preparo do solo e rotações de culturas, foi economicamente viável, propiciando taxas de retorno que variaram de 67% a 97%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em condições de casa de vegetação, avaliou-se o efeito de doses (0, 36, 72, 108 e 144 µg m-2 de i.a.) do herbicida sulfentrazone na nodulação da soja (Glycine max (L.) Merrill cv. BR16) infectada com Bradyrhizobium japonicum estirpe SEMIA 5079, e na fixação de dinitrogênio, estimada pelos teores de ureídeos no exsudato do xilema. Foram quantificados, também, os teores de aminoácidos e nitrato no exsudato do xilema. O número e a matéria seca dos nódulos, as concentrações de aminoácidos, nitrato e ureídeos decresceram com o incremento na dose de sulfentrazone, tanto no estádio R3 quanto no R5 de desenvolvimento da soja.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brusone é um dos fatores limitantes da produtividade da cultivar Metica-1, no Estado do Tocantins. Objetivando obter somaclones resistentes, foi realizada a indução de calos e a regeneração de plantas a partir de panículas imaturas da cultivar Metica-1. Duzentas e oitenta plantas R2 foram submetidas a inoculação inóculo de patótipos de Pyricularia grisea, ID-14 e II-1, provenientes das cultivares Metica-1 e Cica-8, respectivamente. Enquanto todas as 280 plantas R2 de Metica-1 foram resistentes em relação ao patótipo II-1, as progênies de duas plantas R1 mostraram resistência ao patótipo ID14, indicando a indução de variação genética com relação à resistência à brusone na cultivar suscetível, nas gerações iniciais. A geração R3 foi avançada e entre 280 somaclones R4 foram selecionados 51, incluindo dois somaclones, CNAI10390 e CNAI10393, que mostraram resistência vertical no viveiro de brusone. Nas gerações avançadas de R5 e R6, estes dois somaclones apresentaram resistência no viveiro e nas inoculações com cinco isolados, provenientes das cultivares Metica-1, Cica-8 e Epagri 108, e poderão ser usados como novas fontes de resistência à brusone nos programas de melhoramento de arroz.