76 resultados para S-phenyl-mercapturic acid determination
Resumo:
The 10-HDA content in Brazilian samples (São Paulo State) of royal jelly (RJ) was analyzed using an HPLC method based on the work by BLOODWORTH et al. [2]. The chromatographic conditions were: isocratic system, reversed phase C18-H column, auto sampler, diode array UV-VIS detector adjusted to 225nm, mobile phase composed by methanol/water (45:55) at pH= 2.5 adjusted with phosphoric acid; a-naphtol was used as internal standard, and the running time was 30min. By statistical analysis of the results, the 10-HDA contents of the samples analyzed seem to have two ranges: 1.8% and 3% (w/w), that would be useful to qualify the RJ. This is the first data regarding 10-HDA content of Brazilian RJ.
Resumo:
In a fish paste made with cooked Brazilian flathead (Percophis brasiliensis), glycerol (17%), sodium chloride (1.5%) and potassium sorbate (0.1%) the following acid percentages: 0.2; 0.4; 0.6; 0.8, 1 and 1.5% w/w were incorporated to determine the relationship between added acetic acid and the sensorially perceived intensity, and the effects of the combination of sweet-acid tastes. Tests for paired comparison, ranking and structured verbal scales for sweet and acid attributes and psychophysical test were carried out. There was a perceptible difference among samples for differences of 0.4 units of acid concentration. Samples indicated as sweeter by 89.47% of the judges were those containing a lesser acid concentration. A reduction in glycerol sweetness when increasing acid levels was observed. Acetic acid reduced the sweetness of glycerol and inversely glycerol reduced the acidity of acetic acid. The data obtained with the magnitude estimation test agree with Steven's law.
Resumo:
ABSTRACTAiming to compare three different methods for the determination of organic carbon (OC) in the soil and fractions of humic substances, seventeen Brazilian soil samples of different classes and textures were evaluated. Amounts of OC in the soil samples and the humic fractions were measured by the dichromate-oxidation method, with and without external heating in a digestion block at 130 °C for 30 min; by the loss-on-ignition method at 450 °C during 5 h and at 600 °C during 6 h; and by the dry combustion method. Dry combustion was used as reference in order to measure the efficiency of the other methods. Soil OC measured by the dichromate-oxidation method with external heating had the highest efficiency and the best results comparing to the reference method. When external heating was not used, the mean recovery efficiency dropped to 71%. The amount of OC was overestimated by the loss-on-ignition methods. Regression equations obtained between total OC contents of the reference method and those of the other methods showed relatively good adjustment, but all intercepts were different from zero (p < 0.01), which suggests that more accuracy can be obtained using not one single correction factor, but considering also the intercept. The Walkley-Black method underestimated the OC contents of the humic fractions, which was associated with the partial oxidation of the humin fraction. Better results were obtained when external heating was used. For the organic matter fractions, the OC in the humic and fulvic acid fractions can be determined without external heating if the reference method is not available, but the humin fraction requires the external heating.
Resumo:
INTRODUCTION: Metallo-β-lactamase (MBL) has been reported all over the world. METHODS: The inhibitory effect of mercaptopropionic acid (MPA) on bacterial growth was evaluated by comparison between disk diffusion and broth dilution methodology with determination of the minimum inhibitory concentration (MIC) for multidrug-resistant Acinetobacter baumanni strains. RESULTS: MPA significantly inhibited growth of the strains. CONCLUSIONS: The use of MPA can affect the results in phenotypic methods of MBL detection.
Resumo:
An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.
Resumo:
Sulfur in the soil occurs in two basic forms, organic and inorganic S. The organic form accounts for 95 % of S in most soils. The effectiveness of organic S to oxidate to sulfate was evaluated for total S determination in soil samples by wet (acid) and dry-ash (alkaline) oxidation methods. To evaluate the wet method and the possible use as a reference when evaluating the dry method proposed here, a reference standard from the US National Institute of Standards and Technology (NIST) was used (Montana Soil - NIST 2710). The dry-ash oxidation process with alkaline oxidizing agents is one of the simplest oxidation methods of organic S to the sulfate form and was compared with the wet process. The objective of the study was to develop a dry method that would be easy to apply and allow the complete conversion of organic S to sulfate in soil samples and later detection by turbidimetry. The effectiveness of organic S oxidation to sulfate was evaluated by means of three alkaline oxidation mixtures: NaHCO3 + Ag2O, Eschka mixture (17 % Na2CO3, 66 % MgO, and 17 % K2CO3), and NaHCO3 + CuO. The procedure to quantify the sulfate concentration was based on the reaction with barium chloride and turbidimetric detection. Sulfur quantification in the standard sample by the wet method proved adequate, precise and accurate. It should also be pointed out that no significant differences were found (95 % reliability) between the wet and dry processes (NaHCO3 and Ag2O oxidation mixture) in six different Brazilian soils. The proposed dry method can therefore be used in the preparation of soil samples for total S determination.
Resumo:
Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.
Resumo:
Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N) and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept) soil. The treatments were as follows: control (no straw or ash); incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+) and nitrate (NO3-). Soil solution pH and concentration of organic acids (acetic, propionic and butyric) were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1) on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.
Resumo:
The Tahiti acid lime in Brazil is mostly grown in the São Paulo State. The value of this crop production ranks among the ten most important fruits in the country. The Brazilian exports of Tahiti limes have increased in the last years with a corresponding increased demand for superior quality of fresh fruits, which is affected by mineral nutrients. Therefore, this study evaluated nutrient soil availability and its influence on nutritional status of trees based on the determination of leaf and fruit nutrient concentrations, fruit characteristics, and post harvest quality. Eleven commercial groves with trees older than 4-yr and differently managed were studied. Plots with six trees in each grove were sampled for soil (0-20 cm depth layer), leaf and fruit analyses with three replicates. Correlation coefficients were pair wised established for all variables. The results showed that N leaf concentration was well correlated with green color of fruit peel as measured by a color index (r = -0.71**), and which was optimum with Leaf-N around 22 g kg-1. Leaf-Ca was inversely correlated with fruit water loss after 14-day interval from harvest (r = -0.54*) demonstrating that Ca plays an important role in Tahiti fruit shelf-life. Data also suggested that increased fruit K concentration correlated with increased fruit water losses during storage (r >0.58*).
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).
Resumo:
A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.
Resumo:
An alternative methodology for analysis of acetaminophen (Ace), phenylephrine (Phe) and carbinoxamine (Car) in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm) and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1) added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.
Resumo:
A sensitive RP-HPLC method with UV detection successfully measured phenol(s) in an ointment containing 3% Stryphnodendron adstringens extract. Chromatography used acetonitrile (0.05% trifluoroacetic acid):water (0.05% trifluoroacetic acid) (v/v), flow rate 0.8 mL min-1. Quantitation was accomplished by the external-standard method. Linearity for 2.00 to 16.00 μg mL-1 (gallic acid) and 1.14 to 18.24 μg mL-1 (gallocatechin) was established. Intra- and inter-day precision levels were under 5%. LOD and LOQ were 0.231 and 0.770 μg mL-1 (gallic acid) and 0.151 and 0.504 μg mL-1 (gallocatechin), respectively. Determination of phenols was unaffected by product excipients.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
Nitrate is quantitatively retained with 2,6-bis(4-methoxyphenyl)-4-phenyl pyrylium perchlorate (PPP) on microcrystalline naphthalene in the pH range of 6.5-9.0 from a large volume of aqueous solutions of various samples. The method was based on the complexation between PPP and nitrate and then, extraction of the resulted complex from aqueous solution by microcrystalline naphthalene. The solid mass consisting of the nitrate complex and naphthalene was then dissolved in dimethyl formamide (DMF) and absorption of the resulted solution was obtained at 328 nm. The linear calibration range for the determination of nitrate was 15-135 μg L-1 with the detection limit of 10 μg L-1.