183 resultados para Rice Genome
Resumo:
Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/). Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br) are being maintained for communication and to promote collaboration in the genome project
Resumo:
Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a) the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT) medium at 28oC is 58±13 hr; (b) differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c) trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d) blood forms are highly infective to mice; (e) blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a) isoenzymatic profiles are characteristic of zymodeme ZB; (b) PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c) schizodeme, randomly amplified polymorphic DNA (RAPD) and DNA fingerprinting analyses were performed
Resumo:
By using improved pulsed field gel electrophoresis conditions, the molecular karyotype of the reference clone CL Brener selected for Trypanosoma cruzi genome project was established. A total of 20 uniform chromosomal bands ranging in size from 0.45 to 3.5 Megabase pairs (Mbp) were resolved in a single run. The weighted sum of the chromosomal bands was approximately 87 Mbp. Chromoblots were hybridized with 39 different homologous probes, 13 of which identified single chromosomes. Several markers showed linkage and four different linkage groups were identified, each comprising two markers. Densitometric analysis suggests that most of the chromosomal bands contain two or more chromosomes representing either homologous chromosomes and/or heterologous chromosomes with similar sizes
Resumo:
"The host-parasite relationship" is a vast and diverse research field which, despite huge human and financial input over many years, remains largely shrouded in mystery. Clearly, the adaptation of parasites to their different host species, and to the different environmental stresses that they represent, depends on interactions with, and responses to, various molecules of host and/or parasite origin. The schistosome genome project is a primary strategy to reach the goal; this systematic research project has successfully developed novel technologies for qualitative and quantitative characterization of schistosome genes and genome organization by extensive international collaboration between top quality laboratories. Schistosomes are a family of parasitic blood flukes (Phylum Platyhelminthes), which have seven pairs of autosomal chromosomes and one pair of sex chromosomes (ZZ for a male worm and ZW for a female), of a haploid genome size of 2.7x108 base pairs (Simpson et al. 1982). Schistosomes are ideal model organisms for the development of genome mapping strategies since they have a small genome size comparable to that of well-characterized model organisms such as Caenorhabditis elegans (100 Mb) and Drosophila (165 Mb), and contain functional genes with a high level of homology to the host mammalian genes. Here we summarize the current progress in the schistosome genome project, the information of 3,047 transcribed genes (Expressed Sequence Tags; EST), complete sets of cDNA and genomic DNA libraries (including YAC and cosmid libraries) with a mapping technique to the well defined schistosome chromosomes. The schistosome genome project will further identify and characterize the key molecules that are responsible for host-parasite adaptation, i.e., successful growth, development, maturation and reproduction of the parasite within its host in the near future
Resumo:
We have analyzed the compositional properties of coding (protein encoding) and non-coding sequences of Plasmodium falciparum, a unicellular parasite characterized by an extremely AT-rich genome. GC% levels, base and dinucleotide frequencies were studied. We found that among the various factors that contribute to the properties of the sequences analyzed, the most relevant are the compositional constraints which operate on the whole genome
Resumo:
Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantages of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2,770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease
Resumo:
Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given
Resumo:
Random single pass sequencing of cDNA fragments, also known as generation of Expressed Sequence Tags (ESTs), has been highly successful in the study of the gene content of higher organisms, and forms an integral part of most genome projects, with the objective to identify new genes and targets for disease control and prevention and to generate mapping probes. In the Trypanosoma cruzi genome project, EST sequencing has also been a starting point, and here we report data on the first 797 sequences obtained, partly from a CL Brener epimastigote non-normalized library, partly on a normalized library. Only around 30% of the sequences obtained showed similarity with Genbank and dbEST databases, half of which with sequences already reported for T. cruzi.
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.
Resumo:
This study was undertaken to evaluate an enzyme immunoassay (EIA) for hepatitis C virus antibody detection (anti-HCV), using just one antigen. Anti-HCV EIA was designed to detect anti-HCV IgG using on the solid-phase a recombinant C22 antigen localized at the N-terminal end of the core region of HCV genome, produced by BioMérieux. The serum samples diluted in phosphate buffer saline were added to wells coated with the C22, and incubated. After washings, the wells were loaded with conjugated anti-IgG, and read in a microtiter plate reader (492 nm). Serum samples of 145 patients were divided in two groups: a control group of 39 patients with non-C hepatitis (10 acute hepatitis A, 10 acute hepatitis B, 9 chronic hepatitis B, and 10 autoimmune hepatitis) and a study group consisting of 106 patients with chronic HCV hepatitis. In the study group all patients had anti-HCV detected by a commercially available EIA (Abbott®), specific for HCV structural and nonstructural polypeptides, alanine aminotransferase elevation or positive serum HCV-RNA detected by nested-PCR. They also had a liver biopsy compatible with chronic hepatitis. The test was positive in 101 of the 106 (95%) sera from patients in the study group and negative in 38 of the 39 (97%) sera from those in the control group, showing an accuracy of 96%. According to these results, our EIA could be used to detect anti-HCV in the serum of patients infected with hepatitis C virus.
Resumo:
Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.
Resumo:
We report the molecular characterization of a novel reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Trypanosoma cruzi. Steady-state level of transcripts of this sequence family appeared to be developmentally regulated, since only in the replicative forms the parasite showed expression of related sequences with a major band around 3 kb. The presence of frame shifts or premature stop codons predicts that transcripts are not translated. The sequence family also contains truncated forms of retrotransposons elements that may become potential hot spots for retroelement insertion. Sequences homologous to this family are interspersed at many chromosomes including the subtelomeric regions.
Resumo:
The effect of urea on the oviposition behaviour of culicine vectors of Japanese encephalitis was studied in rice fields. Gravid females had a strong preference for oviposition in urea treated areas in rice fields, while no such preference was exhibited in untreated areas. The egg laying declined in the area where urea treated water surface had a mechanical barrier, which allowed volatile fractions to escape, but prevented contact with the water. Urea was shown to act as an oviposition attractant/stimulant for Culex tritaeniorhynchus, but its role was not clear for Cx. vishnui, as the number of egg rafts obtained for the latter species was low.
Resumo:
Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.