42 resultados para Resting metabolic rate
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
Several studies have indicated that depressive states may lead to hypokinesia with diminished metabolic rate and energy use. Hypokinesia associated with certain eating behaviors may lead to an unfavorable energy balance that can contribute to the emergence and prevalence of obesity among children and adults. The purpose of the present study was to examine the possibility of reducing depression inventory scores in female adolescents with third-degree obesity while testing the effectiveness of different exercise programs in reducing anxiety and depression scores. The sample consisted of 40 female subjects (mean age 16 ± 1.56 years) divided into 4 groups (aerobic training, anaerobic training, leisure activities, and control). Subjects had a body mass index of 95% or more in relation to the 50th percentile. The aerobic program consisted of three ergometric bicycle sessions per week over a 3-month period (12 weeks) and the activities were prescribed after determining the anaerobic ventilatory threshold (VO2 threshold). Anaerobic training was based on the Wingate anaerobic power test. The leisure program consisted of a varied range of activities (games, exercises, etc.). A nutritionist interviewed the members of these two groups and the control group every week in order to adapt them to the nutritional guidelines proposed for the study. The study showed that all three programs (aerobic exercise, anaerobic exercise and leisure activities) were effective in reducing body mass. However, we found a significant reduction when analyzing the depression scores only for aerobic exercise (18.9 ± 9.33 to 10.6 ± 9.56 or 43.9%) but no significant alterations for anaerobic exercise (11.36 ± 5.23 to 9.63 ± 4.78 or 15.22%) and leisure (17.28 ± 7.55 to 15.07 ± 7.54 or 12.78%), thus indicating that in principle this type of activity could be included to improve emotional well-being of obese adolescent girls.
Resumo:
Fitness improvement was used to compare morning with afternoon exercise periods for asthmatic children. Children with persistent moderate asthma (according to GINA criteria), 8 to 11 years old, were divided into 3 groups: morning training group (N = 23), afternoon training group (N = 23), and non-training group (N = 23). The program was based on twice a week 90-min sessions for 4 months. We measured the 9-min running distance, resting heart rate and abdominal muscle strength (sit-up number) before and after the training. All children took budesonide, 400 µg/day, and an on demand inhaled ß-agonist. The distance covered in 9 min increased (mean ± SEM) from 1344 ± 30 m by 248 ± 30 m for the morning group, from 1327 ± 30 m by 162 ± 20 m for the afternoon group, and from 1310 ± 20 m by 2 ± 20 m for the control group (P < 0.05 for the comparison of morning and afternoon groups with the control group by ANOVA and P > 0.05 for morning with afternoon comparison). The reduction of resting heart rate from 83 ± 1, 85 ± 2 and 86 ± 1 bpm was 5.1 ± 0.8 bpm in the morning group, 4.4 ± 0.8 bpm in the afternoon group, and -0.2 ± 0.7 bpm in the control group (P > 0.05 for morning with afternoon comparison and P < 0.05 versus control). The number of sit-ups in the morning, afternoon and control groups increased from 22.0 ± 1.7, 24.3 ± 1.4 and 23 ± 1.1 sit-ups by 9.8 ± 0.9, 7.7 ± 1.4, and 1.9 ± 0.7 sit-ups, respectively (P > 0.05 for morning with afternoon comparison and P < 0.05 versus control). No statistically significant differences were detected between the morning and afternoon groups in terms of physical training of asthmatic children.
Resumo:
The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azole-resistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.
Resumo:
The mechanisms underlying the loss of resting bradycardia with detraining were studied in rats. The relative contribution of autonomic and non-autonomic mechanisms was studied in 26 male Wistar rats (180-220 g) randomly assigned to four groups: sedentary (S, N = 6), trained (T, N = 8), detrained for 1 week (D1, N = 6), and detrained for 2 weeks (D2, N = 6). T, D1 and D2 were treadmill trained 5 days/week for 60 min with a gradual increase towards 50% peak VO2. After the last training session, D1 and D2 were detrained for 1 and 2 weeks, respectively. The effect of the autonomic nervous system in causing training-induced resting bradycardia and in restoring heart rate (HR) to pre-exercise training level (PET) with detraining was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. T rats significantly increased peak VO2 by 15 or 23.5% when compared to PET and S rats, respectively. Detraining reduced peak VO2 in both D1 and D2 rats by 22% compared to T rats, indicating loss of aerobic capacity. Resting HR was significantly lower in T and D1 rats than in S rats (313 ± 6.67 and 321 ± 6.01 vs 342 ± 12.2 bpm) and was associated with a significantly decreased intrinsic HR (368 ± 6.1 and 362 ± 7.3 vs 390 ± 8 bpm). Two weeks of detraining reversed the resting HR near PET (335 ± 6.01 bpm) due to an increased intrinsic HR in D2 rats compared with T and D1 rats (376 ± 8.8 bpm). The present study provides the first evidence of intrinsic HR-mediated loss of resting bradycardia with detraining in rats.
Resumo:
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Resumo:
OBJECTIVE: To analyze hemodynamic and metabolic effects of saline solution infusion in the maintenance of blood volume in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. METHODS: We studied 20 dogs divided into 2 groups: the ischemia-reperfusion group (IRG, n=10) and the ischemia-reperfusion group with saline solution infusion aiming at maintaining mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, n=10). All animals were anesthetized with sodium thiopental and maintained on spontaneous ventilation. Occlusion of the supraceliac aorta was obtained with inflation of a Fogarty catheter inserted through the femoral artery. After 60 minutes of ischemia, the balloon was deflated, and the animals were observed for another 60 minutes of reperfusion. RESULTS: IRG-SS dogs did not have hemodynamic instability after aortic unclamping, and the mean systemic blood pressure and heart rate were maintained. However, acidosis worsened, which was documented by a greater reduction of arterial pH that occurred especially due to the absence of a respiratory response to metabolic acidosis that was greater with the adoption of this procedure. CONCLUSION: Saline solution infusion to maintain blood volume avoided hemodynamic instability after aortic unclamping. This procedure, however, caused worsening in metabolic acidosis in this experimental model.
Resumo:
The metabolic responses of adult and young freshwater Kinosternon scorpioides turtles raised in captivity were evaluated. Two experiments were performed: a) blood metabolite changes caused by food deprivation, and b) liver and muscle glycogen and total lipid differences after fasting and refeeding. Blood glucose concentration of young animals was susceptible to food deprivation. In both groups this metabolite decreased after 30 days of fasting. Feeding for 15 days did not recover blood glucose. Total seric proteins were not affected by food deprivation. Fasting decreased blood urea nitrogen and the highest difference was found around 30 days. Uric acid increased in young animals after 60 days of fasting. Triacylglicerol decreased after 15 days of fasting and refeeding for 15 days recovered the pre-fasting levels. Free fatty acid plasma tended to increase around 15 days of fasting. Liver glycogen decreased at day 15 of fasting, being stable thereafter while muscle glycogen decreased at a slower rate. Total liver lipid stabilized after 30 days and then decreased 70% after 60 days of fasting. Muscle lipids remained stable throughout fasting. It could be concluded that fasting of Kinosternon scorpioides led to metabolic adaptations similar to the one reported from reptiles and fish.
Resumo:
Eric Newsholme's laboratory was the first to show glutamine utilization by lymphocytes and macrophages. Recently, we have found that neutrophils also utilize glutamine. This amino acid has been shown to play a role in lymphocyte proliferation, cytokine production by lymphocytes and macrophages and phagocytosis and superoxide production by macrophages and neutrophils. Knowledge of the metabolic fate of glutamine in these cells is important for the understanding of the role and function of this amino acid in the maintenance of the proliferative, phagocytic and secretory capacities of these cells. Glutamine and glucose are poorly oxidized by these cells and might produce important precursors for DNA, RNA, protein and lipid synthesis. The high rate of glutamine utilization and its importance in such cells have raised the question as to the source of this glutamine, which, according to current evidence, appears to be muscle.
Resumo:
Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells). The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats) in the absence of bleeding. The development of anemia was correlated (r2 = 0.86) with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01) on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC), the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability) and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.
Resumo:
The "regional basic diet" or RBD is a multideficient diet (providing 8% protein) which is known to produce dietary deficiencies in some populations in northeastern Brazil. The present study investigated the effects of RBD-induced malnutrition on resting blood pressure and baroreflex sensitivity in conscious rats. Malnourished rats were obtained by feeding dams the RBD during mating and pregnancy (RBD-1 group) or during nursing and a 10-day period after weaning (RBD-2 group). At 90 days of age, only RBD-2 rats weighed significantly (P<0.001) less than control rats born to dams fed a standard commercial diet (23% protein) during pregnancy and nursing. Baseline mean arterial pressure and heart rate of both RBD-1 and RBD-2 rats were comparable to those of controls. The slopes for both reflex bradycardia and tachycardia (bpm/mmHg) induced by intravenous phenylephrine and sodium nitroprusside, respectively, were unchanged in either RBD-1 (-2.08 ± 0.11 and -3.10 ± 0.43, respectively) or RBD-2 (-2.32 ± 0.30 and -3.73 ± 0.53, respectively) rats, when compared to controls (-2.09 ± 0.10 and -3.17 ± 0.33, respectively). This study shows that, after a prolonged period of nutritional recovery, the patterns of resting blood pressure and baroreflex sensitivity of both pre- and postnatally malnourished rats were similar to those of controls. The decreased body weight and the tendency to increased reflex tachycardia in RBD-2 rats may suggest that this type of maternal malnutrition during lactation is more critical than during pregnancy.
Resumo:
The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms²/Hz) than in middle-aged men (357; 342 ms²/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.
Resumo:
Streptozotocin (STZ)-induced diabetes in rats is characterized by cardiovascular dysfunction beginning 5 days after STZ injection, which may reflect functional or structural autonomic nervous system damage. We investigated cardiovascular and autonomic function, in rats weighing 166 ± 4 g, 5-7, 14, 30, 45, and 90 days after STZ injection (N = 24, 33, 27, 14, and 13, respectively). Arterial pressure (AP), mean AP (MAP) variability (standard deviation of the mean of MAP, SDMMAP), heart rate (HR), HR variability (standard deviation of the normal pulse intervals, SDNN), and root mean square of successive difference of pulse intervals (RMSSD) were measured. STZ induced increased glycemia in diabetic rats vs control rats. Diabetes reduced resting HR from 363 ± 12 to 332 ± 5 bpm (P < 0.05) 5 to 7 days after STZ and reduced MAP from 121 ± 2 to 104 ± 5 mmHg (P = 0.007) 14 days after STZ. HR and MAP variability were lower in diabetic vs control rats 30-45 days after STZ injection (RMSSD decreased from 5.6 ± 0.9 to 3.4 ± 0.4 ms, P = 0.04 and SDMMAP from 6.6 ± 0.6 to 4.2 ± 0.6 mmHg, P = 0.005). Glycemia was negatively correlated with resting AP and HR (r = -0.41 and -0.40, P < 0.001) and with SDNN and SDMMAP indices (r = -0.34 and -0.49, P < 0.01). Even though STZ-diabetic rats presented bradycardia and hypotension early in the course of diabetes, their autonomic function was reduced only 30-45 days after STZ injection and these changes were negatively correlated with plasma glucose, suggesting a metabolic origin.