230 resultados para Real-time polymerase chain reaction (real-time PCR)
Resumo:
Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the “culture PCR” approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) protocol for the detection of Salmonella in artificially contaminated chicken meat. Tests were performed with different dilutions of Salmonella Typhimurium or Salmonella Enteritidis cells (10-7, 10-8 or 10-9 CFU/mL) inoculated in chicken meat samples, in order to establish the limits of detection, incubation times (0, 6, 8 and 24 hours of pre-enrichment in PBW 1%) and three DNA extraction protocols (phenol-chloroform, thermal treatment and thermal treatment and Sephaglass). The assay was able to detect until 10-9 CFU/mL of initial dilution of Salmonella cells inoculated in chicken meat, which allows detection of Salmonella within 48 hours, including 24 hours of pre-enrichment and using the phenol-chloroform DNA extraction protocol. As the results are obtained in a shorter time period than that of microbiological culture, this procedure will be useful in the methodology for detection of Salmonella in chicken.
Resumo:
Forty-six allogeneic hematopoietic stem cell transplantation (HSCT) patients were monitored for the presence of CMV antibodies, CMV-DNA and CMV antigens after transplantation. Immunoenzymatic serological tests were used to detect IgM and the increase in CMV IgG antibodies (increase IgG), a nested polymerase chain reaction (N-PCR) was used to detect CMV-DNA, and an antigenemia assay (AGM) was used to detect CMV antigens. The presence of CMV-IgM and/or CMV-increase IgG antibodies was detected in 12/46 (26.1%) patients, with a median time between HSCT and the detection of positive serology of 81.5 days. A positive AGM was detected in 24/46 (52.2%) patients, with a median time between HSCT and antigen detection of 62 days. Two or more consecutive positive N-PCR results were detected in 32/46 (69.5%) patients, with a median time between HSCT and the first positive PCR of 50.5 days. These results confirmed that AGM and mainly PCR are superior to serology for the early diagnosis of CMV infection. Six patients had CMV-IgM and/or CMV-increase IgG with a negative AGM (five cases) or N-PCR assay (one case). In five of these cases the serological markers were detected during the first 100 days after HSCT, the period of highest risk. These findings support the idea that serology may be useful for monitoring CMV infections in HSCT patients, especially when PCR is unavailable.
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
An hemodialysis population in Central Brazil was screened by polymerase chain reaction (PCR) and serological methods to assess the prevalence of hepatitis C virus (HCV) infection and to investigate associated risk factors. All hemodialysis patients (n=428) were interviewed in eight dialysis units in Goiânia city. Blood samples were collected and serum samples screened for anti-HCV antibodies by an enzyme-linked immunosorbent assay (ELISA). Positive samples were retested for confirmation with a line immunoassay (LIA). All samples were also tested for HCV RNA by the PCR. An overall prevalence of 46.7% (CI 95%: 42-51.5) was found, ranging from 20.7% (CI 95%: 8.8-38.1) to 90.4% (CI 95%: 79.9-96.4) depending on the dialysis unit. Of the 428 patients, 185 were found to be seropositive by ELISA, and 167 were confirmed positive by LIA, resulting in an anti-HCV prevalence of 39%. A total of 131 patients were HCV RNA-positive. HCV viremia was present in 63.5% of the anti-HCV-positive patients and in 10.3% of the anti-HCV-negative patients. Univariate analysis of risk factors showed that the number of previous blood transfusions, transfusion of blood before mandatory screening for anti-HCV, length of time on hemodialysis, and treatment in multiple units were associated with HCV positivity. However, multivariate analysis revealed that blood transfusion before screening for anti-HCV and length of time on hemodialysis were significantly associated with HCV infection in this population. These data suggest that nosocomial transmission may play a role in the spread of HCV in the dialysis units studied. In addition to anti-HCV screening, HCV RNA detection is necessary for the diagnosis of HCV infection in hemodialysis patients.
Resumo:
The presence of anti leptospiral agglutinins (microscopic agglutination test - MAT) and DNA of leptospires was investigated in the kidney and urine (Polymerase Chain Reaction - PCR) in samples collected at the time of slaughter of cattle originating from the dairy basin of Parnaíba, Piauí, Brazil, as also the lesions in kidney, lung, liver, uterus, ovary and placenta (histopathology and immunohistochemistry). In the MAT, Hardjo was the predominant serovar with the highest number of reagent animals for the strain Hardjobovis/Sponselee. Anti-leptospiral antigens were scored in epithelial cells, interstitial vascular endothelium, endothelium of glomerular capillaries and Bowman's capsule of 20 positive animals. Inflammatory cells were more common in the kidney. PCR was positive in urine and kidney tissue
Resumo:
Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas - FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods.
Resumo:
In Brazil, the main etiologic agent of Leishmaniasis that frequently presents with mucosal involvement belongs to the Viannia subgenus. The therapeutic conduct in this disease depends on the parasitological diagnosis, and classical methods are restricted in identifying the agent. In this paper we describe a polymerase chain reaction (PCR), which uses primers designed from mini-exons repetitive sequences. The PCR amplifies a 177bp fragment that can distinguish (Viannia) from (Leishmania) subgenus. This test could be a useful diagnostic tool.
Resumo:
Detection of HBV-DNA by PCR was compared with other serological markers (HBsAg, HBeAg and anti-HBe) in a series of49 Chronic Hepatitis B patients, including 12 with a spontaneous clearance of HBsAg. None of these HBsAg negative cases were PCR positive, but 33/37 (89.2%) HBsAg positive cases were PCR positive (p < 0.0001). Among HBsAg positive samples, nine cases were HBeAg positive and anti-HBe negative, all of them PCR positive. Other 3 patients were HBeAg and anti-HBe positive and these cases were also found PCR positive. A third group included 21 patients anti-HBe positive and HBeAg negative: 19 of them were PCR positive and 2 were PCR negative. The last 4 cases were HBeAg and anti-HBe negative, two of them were PCR positive. The detection of anti-HBe viremic cases in the present series suggest that preC variants could occur in our country. In conclusion, the integrated phase o f chronic hepatitis B seems to be less frequent than it was assumed, when only HBeAg or dot blot hybridization techniques were used. The new term "low replication phase" might favorably replace the former "integrated phase".
Resumo:
A polymerase chain reaction was carried out to detect pathogenic leptospires isolated from animals and humans in Argentina. A double set of primers (G1/G2, B64-I/B64-II), described before, were used to amplify by PCR a DNA fragment from serogroups belonging to Leptospira interrogans but did not allow to detect saprophytic strains isolated from soil and water (L. biflexa). This fact represents an advantage since it makes possible the differentiation of pathogenic from non-pathogenic leptospires in cultures. The sensitivity of this assay has been determined, allowing to detect just only 10 leptospires in the reaction tube. Those sets of primers generated either a 285 bp or 360 bp fragment, depending on the pathogenic strain
Resumo:
The objective of the present study was to determine the prevalence of certain mycoplasma species, i.e., Mycoplasma hominis, Ureaplasma urealyticum and Mycoplasma penetrans, in urethral swabs from HIV-1 infected patients compared to swabs from a control group. Mycoplasmas were detected by routine culture techniques and by the Polymerase Chain Reaction (PCR) technique, using 16SrRNA generic primers of conserved region and Mycoplasma penetrans specific primers. The positivity rates obtained with the two methods were comparable. Nevertheless, PCR was more sensitive, while the culture techniques allowed the quantification of the isolates. The results showed no significant difference (p < 0.05) in positivity rates between the methods used for mycoplasma detection.
Resumo:
Screening blood donations for anti-HCV antibodies and alanine aminotransferase (ALT) serum levels generally prevents the transmission of hepatitis C virus (HCV) by transfusion. The aim of the present study was to evaluate the efficiency of the enzyme immunoassay (EIA) screening policy in identifying potentially infectious blood donors capable to transmit hepatitis C through blood transfusion. We have used a reverse transcriptase (RT)-nested polymerase chain reaction (PCR) to investigate the presence of HCV-RNA in blood donors. The prevalence of HCV-RNA positive individuals was compared with the recombinant immunoblot assay (RIBA-2) results in order to assess the usefulness of both tests as confirmatory assays. Both tests results were also compared with the EIA-2 OD/C ratio (optical densities of the samples divided by the cut off value). ALT results were expressed as the ALT quotient (qALT), calculated dividing the ALT value of the samples by the maximum normal value (53UI/l) for the method. Donors (n=178) were divided into five groups according to their EIA anti-HCV status and qALT: group A (EIA > or = 3, ALT<1), group B (EIA > or = 3, ALT>1), group C (1<=EIA<3, ALT<1), group D (1<=EIA<3, ALT>1) and group E (EIA<=0.7). HCV sequences were detected by RT-nested PCR, using primers for the most conserved region of viral genome. RIBA-2 was applied to the same samples. In group A (n=6), all samples were positive by RT-nested PCR and RIBA-2. Among 124 samples in group B, 120 (96.8%) were RIBA-2 positive and 4 (3.2%) were RIBA-2 indeterminate but were seropositive for antigen c22.3. In group B, 109 (87.9%) of the RIBA-2 positive samples were also RT-nested PCR positive, as well as were all RIBA-2 indeterminate samples. In group C, all samples (n=9) were RT-nested PCR negative: 4 (44.4%) were also RIBA-2 negative, 4 (44.4%) were RIBA-2 positive and 1 (11.1%) was RIBA-2 indeterminate. HCV-RNA was detected by RT-nested PCR in 3 (37.5%) out of 8 samples in group D. Only one of them was also RIBA-2 positive, all the others were RIBA-2 indeterminate. All of the group E samples (controls) were RT- nested PCR and RIBA-2 negative. Our study suggests a strong relation between anti-HCV EIA-2 ratio > or = 3 and detectable HCV-RNA by RT-nested PCR. We have also noted that blood donors with RIBA-2 indeterminate presented a high degree of detectable HCV-RNA using RT-nested PCR (75%), especially when the c22.3 band was detected.