52 resultados para Rank estimation
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
The objective of this work was to develop a procedure to estimate soybean crop areas in Rio Grande do Sul state, Brazil. Estimations were made based on the temporal profiles of the enhanced vegetation index (Evi) calculated from moderate resolution imaging spectroradiometer (Modis) images. The methodology developed for soybean classification was named Modis crop detection algorithm (MCDA). The MCDA provides soybean area estimates in December (first forecast), using images from the sowing period, and March (second forecast), using images from the sowing and maximum crop development periods. The results obtained by the MCDA were compared with the official estimates on soybean area of the Instituto Brasileiro de Geografia e Estatística. The coefficients of determination ranged from 0.91 to 0.95, indicating good agreement between the estimates. For the 2000/2001 crop year, the MCDA soybean crop map was evaluated using a soybean crop map derived from Landsat images, and the overall map accuracy was approximately 82%, with similar commission and omission errors. The MCDA was able to estimate soybean crop areas in Rio Grande do Sul State and to generate an annual thematic map with the geographic position of the soybean fields. The soybean crop area estimates by the MCDA are in good agreement with the official agricultural statistics.
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.
Resumo:
The phyllochron is defined as the time required for the appearance of successive leaves on a plant; this characterises plant growth, development and adaptation to the environment. To check the growth and adaptation in cultivars of strawberry grown intercropped with fig trees, it was estimated the phyllochron in these production systems and in the monocrop. The experiment was conducted in greenhouses at the University of Passo Fundo (28º15'41'' S, 52º24'45'' W and 709 m) from June 8th to September 4th, 2009; this comprised the period of transplant until the 2nd flowering. The cultivars Aromas, Camino Real, Albion, Camarosa and Ventana, which seedlings were originated from the Agrícola LLahuen Nursery in Chile, as well as Festival, Camino Real and Earlibrite, originated from the Viansa S.A. Nursery in Argentina, were grown in white polyethylene bags filled with commercial substrate (Tecnomax®) and evaluated. The treatments were arranged in a randomised block design and four replicates were performed. A linear regression was realized between the leaf number (LN) in the main crown and the accumulated thermal time (ATT). The phyllochron (degree-day leaf-1) was estimated as the inverse of the angular coefficient of the linear regression. The data were submitted to ANOVA, and when significance was observed, the means were compared using the Tukey test (p < 0.05). The mean and standard deviation of phyllochrons of strawberry cultivars intercropped with fig trees varied from 149.35ºC day leaf-1 ± 31.29 in the Albion cultivar to 86.34ºC day leaf-1 ± 34.74 in the Ventana cultivar. Significant differences were observed among cultivars produced in a soilless environment with higher values recorded for Albion (199.96ºC day leaf-1 ± 29.7), which required more degree-days to produce a leaf, while cv. Ventana (85.76ºC day leaf-1 ± 11.51) exhibited a lower phyllochron mean value. Based on these results, Albion requires more degree-days to issue a leaf as compared to cv. Ventana. It was conclude that strawberry cultivars can be grown intercropped with fig trees (cv. Roxo de Valinhos).
Resumo:
Several models for the estimation of thermodynamic properties of layered double hydroxides (LDHs) are presented. The predicted thermodynamic quantities calculated by the proposed models agree with experimental thermodynamic data. A thermodynamic study of the anion exchange process on LDHs is also made using the described models. Tables for the prediction of monovalent anion exchange selectivities on LDHs are provided. Reasonable agreement is found between the predicted and the experimental monovalent anion exchange selectivities.
Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers
Resumo:
Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.
Resumo:
Extended Hildebrand Solubility Approach (EHSA) was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%). Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.
Resumo:
The phenotypic diversity of Magnaporthe grisea was evaluated based on leaf samples with blast lesions collected from eight commercial fields of the upland rice cultivars 'BRS Primavera' and 'BRS Bonança', during the growing seasons of 2001/2002 and 2002/2003, in Goias State. The number of M. grisea isolates from each field utilized for virulence testing varied from 28 to 47. Three different indices were used based on reaction type in the eight standard international differentials and eight Brazilian differentials. The M. grisea subpopulations of ´Primavera' and 'Bonança', as measured by Simpson, Shannon and Gleason indices, showed similar phenotypic diversities. The Simpson index was more sensitive relation than those of Shannon and Gleason for pathotype number and standard deviation utilizing Brazilian differentials. However, the Gleason index was sensitive to standard deviation for international differentials. The sample size did not significantly influence the diversity index. The two sets of differential cultivars used in this study distinguished phenotypic diversity in different ways in all of the eight subpopulations analyzed. The phenotypic diversity determined based on eight differential Brazilian cultivars was lower in commercial rice fields of 'Primavera' than in the fields of 'Bonança,' independent of the diversity index utilized, year and location. Considering the Brazilian differentials, the four subpopulations of 'BRS Primavera' did not show evenness in distribution and only one pathotype dominated in the populations. The even distribution of pathotype was observed in three subpopulations of 'BRS Bonança'. The pathotype diversity of M. grisea was determined with more precision using Brazilian differentials and Simpson index.
Resumo:
A quantitative analysis is made on the correlation ship of thermodynamic property, i.e., standard enthalpy of formation (ΔH fº) with Kier's molecular connectivity index(¹Xv),vander waal's volume (Vw) electrotopological state index (E) and refractotopological state index (R) in gaseous state of alkanes. The regression analysis reveals a significant linear correlation of standard enthalpy of formation (ΔH fº) with ¹Xv, Vw, E and R. The equations obtained by regression analysis may be used to estimate standard enthalpy of formation (ΔH fº) of alkanes in gaseous state.
Resumo:
The aim of this work was to develop and validate simple, accurate and precise spectroscopic methods (multicomponent, dual wavelength and simultaneous equations) for the simultaneous estimation and dissolution testing of ofloxacin and ornidazole tablet dosage forms. The medium of dissolution used was 900 ml of 0.01N HCl, using a paddle apparatus at a stirring rate of 50 rpm. The drug release was evaluated by developed and validated spectroscopic methods. Ofloxacin and ornidazole showed 293.4 and 319.6nm as λmax in 0.01N HCl. The methods were validated to meet requirements for a global regulatory filing. The validation included linearity, precision and accuracy. In addition, recovery studies and dissolution studies of three different tablets were compared and the results obtained show no significant difference among products.
Resumo:
ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.). Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot) based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.
Resumo:
The numerous methods for calculating the potential or reference evapotranspiration (ETo or ETP) almost always do for a 24-hour period, including values of climatic parameters throughout the nocturnal period (daily averages). These results have a nil effect on transpiration, constituting the main evaporative demand process in cases of localized irrigation. The aim of the current manuscript was to come up with a model rather simplified for the calculation of diurnal daily ETo. It deals with an alternative approach based on the theoretical background of the Penman method without having to consider values of aerodynamic conductance of latent and sensible heat fluxes, as well as data of wind speed and relative humidity of the air. The comparison between the diurnal values of ETo measured in weighing lysimeters with elevated precision and estimated by either the Penman-Monteith method or the Simplified-Penman approach in study also points out a fairly consistent agreement among the potential demand calculation criteria. The Simplified-Penman approach was a feasible alternative to estimate ETo under the local meteorological conditions of two field trials. With the availability of the input data required, such a method could be employed in other climatic regions for scheduling irrigation.
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.