56 resultados para Radiation-induced skin reactions
Resumo:
A population of 420 snails Biomphalaria straminea, an intermediate host of Schistosoma mansoni, received gamma-rays obtained from a 60Co source in low-doses (0/2,5/5/7,5/10/15/20 and 25 Gy); half population was kept in colonies (allowing cross fertilization) and the other half was mantained in sexual isolation (allowing self fertilization). Results showed that 15 Gy stimulates the fertility of both groups but the colonies were more sensitive and at this dose its fertility overpasses the control group dose. The possible hormonal role played in the observed phenomena is under investigation
Resumo:
Doses of 60Co gamma radiation with 2.5; 5; 7.5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 80; 160; 320 and 640 Gy were applied to 1,080 snails Biomphalaria straminea, an intermediate host of Schistosoma mansoni, divided in groups containing 30 mollusks. In addition, 60 non irradiated snails were kept as control. Fifty percent of the population was kept in colonies (allowing cross fertilization) while the other half was maintained in sexual isolation (allowing self fertilization) and during one month their growth was observed through the daily measurement of the shell diameter. Results showed that after 20 Gy doses the growth in shell diameter of irradiated snails was greater than that of the control group after 30 days. At this dose the snail size was the greatest, among all isolated groups. The 80 Gy doses also induced the final shell diameter of isolated snails to be greater then that observed in the control groups. As this effect was most evident among the isolated snails, a possible hormonal role may have been involved in the observed phenomena, which is under investigation with the objective of identifying any future applications that this could have to schistosomiasis control.
Resumo:
Objective : to evaluate the effect of topical delivery of latex cream-gel in acute cutaneous wounds induced on the back of rats. Methods : we subjected sixteen rats to dermo-epidermal excision of a round dorsal skin flap, with 2.5cm diameter. We divided the animals into two groups: Latex Group: application of cream-gel-based latex throughout the wound bed on postoperative days zero, three, six and nine; Control group: no treatment on the wound. Photographs of the lesions were taken on the procedure day and on the 6th and 14th postoperative days, for analyzing the area and the larger diameter of the wound. We carried out euthanasia of all animals on the 14th postoperative day, when we resected he dorsal skin and the underlying muscle layer supporting the wound for histopathological study. Results : there was no statistically significant difference in the percentage of wound closure, in the histopathological findings or in the reduction of the area and of the largest diameter of the wounds among the groups studied on the 14th postoperative day. Conclusion : according to the experimental conditions in which the study was conducted, latex cream-gel did not interfere in the healing of acute cutaneous wounds in rats.
Resumo:
The objective of the study was to evaluate whether allergenic extracts of five house dust and storage mite species standardized for humans might be used for the diagnosis of canine atopic dermatitis (CAD). Extracts of Dermatophagoides pteronyssinus (Pyroglyphidae), D. farinae (Pyroglyphidae), Blomia tropicalis (Glycyphagidae), Lepidoglyphus destructor (Glycyphagidae) and Tyrophagus putrescentiae (Acaridae) were evaluated by intradermal testing in 20 healthy dogs (control) and 25 dogs with allergic dermatitis. A significant difference in the response was observed between the two groups (p<0.05). Only one dog (5%) in the control group reacted to the intradermal test, whereas 14 dogs (56%) in the allergic group were positive for at least one extract (odds ratio = 24.2). Most of the positive reactions observed in the allergic group occurred against the extracts of T. putrescentiae or L. destructor, each inducing reactions in 10 dogs (40%). D. farinae, D. pteronyssinus e B. tropicalis extracts induced reactions in 7 (28%), 3 (12%) and 3 (12%) dogs, respectively. The allergenic extracts standardized for humans evaluated in the present study may be used as a tool to complement the diagnosis of the disease, as well as to select potential allergen candidates for allergen-specific immunotherapy.
Resumo:
Combined therapy with radiation and chemotherapy has being increasingly used in cancer treatment. The effect of combinations of taxol (0.08 mug/ml) with doxorubicin (DXR, 0.5 or 1.0 mug/ml) or gamma radiation (20 or 40 cGy) was examined in two different treatment schedules (pretreatment or simultaneous treatment) using Chinese hamster ovary (CHO) cells treated at the G2 phase of the cell cycle. The results showed that taxol did not have a radiosensitizing effect on the chromosomal aberrations induced by gamma radiation nor did it have a potentiating effect on the chromosomal aberrations induced by DXR in CHO cells treated in the G2 phase of the cell cycle
Resumo:
OBJECTIVE To describe the trend for malignant skin neoplasms in subjects under 40 years of age in a region with high ultraviolet radiation indices.METHODS A descriptive epidemiological study on melanoma and nonmelanoma skin cancers that was conducted in Goiania, Midwest Brazil, with 1,688 people under 40 years of age, between 1988 and 2009. Cases were obtained fromRegistro de Câncer de Base Populacional de Goiânia(Goiania’s Population-Based Cancer File). Frequency, trends, and incidence of cases with single and multiple lesions were analyzed; transplants and genetic skin diseases were found in cases with multiple lesions.RESULTS Over the period, 1,995 skin cancer cases were observed to found, of which 1,524 (90.3%) cases had single lesions and 164 (9.7%) had multiple lesions. Regarding single lesions, incidence on men was observed to have risen from 2.4 to 3.1/100,000 inhabitants; it differed significantly for women, shifting from 2.3 to 5.3/100,000 (Annual percentage change – [APC] 3.0%, p = 0.006). Regarding multiple lesions, incidence on men was observed to have risen from 0.30 to 0.98/100,000 inhabitants; for women, it rose from 0.43 to 1.16/100,000 (APC 8.6%, p = 0.003). Genetic skin diseases or transplants were found to have been correlated with 10.0% of cases with multiple lesions – an average of 5.1 lesions per patient. The average was 2.5 in cases without that correlation.CONCLUSIONS Skin cancer on women under 40 years of age has been observed to be increasing for both cases with single and multiple lesions. It is not unusual to find multiple tumors in young people – in most cases, they are not associated with genetic skin diseases or transplants. It is necessary to avoid excessive exposure to ultraviolet radiation from childhood.
Resumo:
We studied the susceptibility to Leishmania (Viannia) panamensis in strains of mice. The C57BL/6 strain was resistant and showed self-controlled lesion at the injected foot pad. The BALB/c and DBA/2J strains were susceptible and showed a foot swelling that started day 20 post-infection and progressed to a tumour-like lesion in later period of observation. The CBA/HJ strain was found to be of intermediary resistance. In contrast to other known cutaneous leishmaniasis in mice, the lesion in L. (V.) panamensis-infected mice was restricted to the inoculation site in the skin. In addition, we studied the development of cellular response and antibodies against Leishmania antigen in BALB/c and C57BL/6 strains. The proliferative response of lymph node cells against L. (V.) panamensis antigen was biphasic in both strains. An initial response was seen on day 20, followed by a refractory period between 40 and 80 days and a second response around fourth month post-infection. The response in the latter period was higher in C57BL/6 strain than in BALB/c strain. BALB/c strain presented much higher anti-Leishmania antibody level than C57BL/6 strain. The model and the correlation of immunological variables and the course of the infection are discussed.
Resumo:
An epizootic outbreak of rabies occurred in 1995 in Ribeirão Preto, SP, with 58 cases of animal rabies (54 dogs, 3 cats and 1 bat) confirmed by the Pasteur Institute of São Paulo, and one human death. The need to provide care to a large number of people for the application of equine rabies immune globulin (ERIG) prevented the execution of the skin sensitivity test (SST) and often also the execution of desensitization, procedures routinely used up to that time at the Emergency Unit of the University Hospital of the Faculty of Medicine of Ribeirão Preto, University of São Paulo (EU-UHFMRP-USP), a reference hospital for the application of heterologous sera. In view of our positive experience of several years with the abolition of SST and of the use of premedication before the application of antivenom sera, we used a similar schedule for ERIG application. Of the 1489 victims of animal bites, 1054 (71%) received ERIG; no patient was submitted to SST and all received intravenously anti-histamines (anti-H1 + anti-H2) and corticosteroids before the procedure. The patients were kept under observation for 60 to 180 minutes and no adverse reaction was observed. On the basis of these results, since December 1995 ERIG application has been decentralized in Ribeirão Preto and has become the responsibility of the Emergency Unit of the University Hospital and the Central Basic Health Unit, where the same routine is used. Since then, 4216 patients have received ERIG (1818 at the Basic Health Unit and 2398 at the EU-UHFMRP), with no problems. The ideal would be the routine use of human rabies immune globulin (HRIG) in public health programs, but this is problematic, because of their high cost. However, while this does not occur, the use of SST is no longer justified at the time of application of ERIG, in view of the clinical evidence of low predictive value and low sensitivity of SST involving the application of heterologous sera. It is very important to point out that a negative SST result may lead the health team to a feeling of false safety that no adverse reaction will occur, but this is not true for the anaphylactoid reactions. The decision to use premedication, which is based on knowledge about anaphylaxis and on the pharmacology of the medication used, is left to the judgment of health professionals, who should always be prepared for eventual untoward events.
Resumo:
A case-control study was conducted to examine the association among the Montenegro skin test (MST), age of skin lesion and therapeutic response in patients with cutaneous leishmaniasis (CL) treated at Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. For each treatment failure (case), two controls showing skin lesion healing following treatment, paired by sex and age, were randomly selected. All patients were treated with 5 mg Sb5+/kg/day of intramuscular meglumine antimoniate (Sb5+) for 30 successive days. Patients with CL were approximately five times more likely to fail when lesions were less than two months old at the first appointment. Patients with treatment failure showed less intense MST reactions than patients progressing to clinical cure. For each 10 mm of increase in MST response, there was a 26% reduction in the chance of treatment failure. An early treatment - defined as a treatment applied for skin lesions, which starts when they are less than two months old at the first appointment -, as well as a poor cellular immune response, reflected by lower reactivity in MST, were associated with treatment failure in cutaneous leishmaniasis.
Resumo:
Introduction Leprosy is a chronic disease that affects skin and peripheral nerves. Disease complications include reactional episodes and physical impairment. One World Health Organization (WHO) goal of leprosy programs is to decrease the number of grade 2 impairment diagnoses by 2015. This study aims to evaluate clinical factors associated with the occurrence of leprosy reactions and physical impairment in leprosy patients. Methods We conducted a retrospective study of data from medical records of patients followed in two important centers for the treatment of leprosy in Aracaju, Sergipe, Brazil, from 2005 to 2011. We used the chi-square test to analyze associations between the following categorical variables: gender, age, operational classification, clinical forms, leprosy reactions, corticosteroid treatment, and physical impairment at the diagnosis and after cure. Clinical variables associated with multibacillary leprosy and/or reactional episodes and the presence of any grade of physical impairment after cure were evaluated using the logistic regression model. Results We found that men were more affected by multibacillary forms, reactional episodes, and grade 2 physical impairment at diagnosis. Leprosy reactions were detected in a total of 40% of patients and all were treated with corticosteroids. However, physical impairment was observed in 29.8% of the patients analyzed at the end of the treatment and our multivariate analysis associated a low dose and short period of corticosteroid treatment with persistence of physical impairments. Conclusions Physical impairment should receive an increased attention before and after treatment, and adequate treatment should be emphasized.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
The author has studied the influence of acetylcholine solutions directly applied on the motor cortex of dogs, cats monkeys and rabbits. For this purpose small squares of filter paper were soaked in the acetylcholine solution and soon afterwards laid on the motor cortex. Solutions varying from 0,2 to 10 per cent have been experimented. It has been shown that local application of the solutions on the motor points, previously localized by induction coil, produced motor reactions. It has been found, in the dogs that 10 per cent acetylcholine solutions cause localized muscular twitchings (clonus) in almost all the animals experimented. Generalised epileptiform convulsions were obtained in44,4% of the dogs. Convulsions were also obtained by employing 1 per cent solution of acetylcholine. Definite response has been obtained with 0,2 per cent solution. Failure of motor action, pointed out by other authors, has been related to the use of anesthetics. Convulsions were easily produced by rapid light mechanical stimulations of the skin covering the muscles in conection with the excited motor point, and the application on the motor point of acetylcholine. The results on monkeys can be summarized as follows. Two species of monkeys were experimented: Cebus capucinus and Macaca mulata. In the monkeys C. capucinus generalised convulsive reactions were induced with actylcholine solutions in a concentration as low as 0,5 per cent. Motor reaction or convulsive seizeres were obtained in seven of the eight monkeys used. Three monkeys M. mulata were stimulated with 10 per cent acetylcholine solution but only localized muscular contraction hae been observed. Similar results has been obtained on the motor cortex of cats and rabbits. One of the three cats employed has shown epileptiform convulsions and the remaining only localized muscular contractions. In the rabbits muscular twitchings have been also induced. The sensitizing power of eserine on the action of acetylcholine has been also searched. The results indicate that a previous application of eserine solution on the motor center, potentiates the action of acetylcholine. The intensity of the muscular twitchings is greater than the obtained before the application of the eserine solution. Generalised epileptiform convulsions sometimes appeared following the use of lower concentrations of acetylcholine than those previously employed. Experiments have been carried out by injecting eserine and prostigmine by parenteral route. A dosis dufficient for induce small muscular tremors did not enhance obviously the motor effects produced by the application of the acetylcholine solutions on the motor cortex. From seven dogs experimented, all previously tested for convulsive seiruzes by application of 1 and 10 per cent acetylcholine solution with negative results, only one has shown epileptiform convulsions after the injection of prostigmine. Morphine has also been tested as facilitating substance for convulsions induced by acetylcholine. Six from the nine dogs submitted to the experiments, developed epileptiform seizures after injection of morphine and stimulation of the motor cortex with acetylcholine. (Table IV). In another series of experiments atropine and nicotine have been studied as for to their action on the motor effects of acetylcholine. Nicotine has a strong convulsant action, even when employed in very high concentration. Since a depressant effect has not appeared even by the applications of high concentrations of nicotine in the motor corteõ of dogs, unlike the classical observations for the autonomus nervous system, it was not possible to verify the action of acetylcholine on a motor center paralised by nicotine. It is important to not that the motor phenomena observed after the first aplication of acetylcholine, can desappear by the renewal of the pieces of filter paper soaked in the acetylcholine solution. Atropine, either applied on the motor point in low concentration, or injected in sufficient amount for inhibiting the muscarinic effects of acetylcholine on the autonomous nervous system, did not prevent the motor reactions of acetylcholine on the cerebral cortex.
Resumo:
To evaluate the effect of BCG vaccination and T lymphocyte subpopulations on the reactivity to the tuberculin skin test, 113 asymtomatic HIV+ individuals were tuberculin tested by intradermal injection of 5TU of purified protein derivative and the levels of circulating lymphocyte (CD3, CD4 and CD8) subpopulations determined by indirect immunofluorescence. Ninety-two percent of the subjects included in the study were males. The mean age of the group was 32.1±7.4 years. Sixty-two percent presented a BCG scar. However, only 22% exhibited positive tuberculin reactions (³5mm) irrespective of the presence of the BCG scar. Tuberculin positive individuals exhibited higher CD4+ cell counts (p=0.004) and CD4+/CD8+ ratios (p=0.006) than tuberculin negative (<5mm) HIV+ individuals. The number of individuals with positive tuberculin reactions was significantly higher in subjects with more than 500 CD4+ lymphocytes/ml (p=0.02) or CD4+/CD8+ ratios ³1.12 (p=0.002). These results suggest that a prior BCG vaccination does not influence the reactivity to the tuberculin skin test in HIV+ asymptomatic individuals and that the number of CD4+ lymphocytes and the CD4+/CD8+ ratio positively correlate with the tuberculin reactivity
Resumo:
The elevation of intracellular cyclic AMP by phosphodiesterase (PDE)4 inhibitors in eosinophils is associated with inhibition of the activation and recruitment of these cells. We have previously shown that systemic treatment with the PDE4 inhibitor rolipram effectively inhibt eosinophil migration in guinea pig skin. In the present study we compare the oral potency and efficacy of the PDE4 inhibitors rolipram, RP 73401 and CDP 840 on allergic and PAF-induced eosinophil recruitment. Rolipram and RP 73401 were equally effective and potent when given by the oral route and much more active than the PDE4 inhibitor CDP 840. We suggest that this guinea pig model of allergic and mediator-induced eosinophil recruitment is both a sensitive and simple tool to test the efficacy and potency of PDE4 inhibitors in vivo.
Resumo:
The majority of Kudoa species infect the somatic muscle of fish establishing cysts. As there is no effective method to detect infected fish without destroying them these parasited fish reach the consumer. This work was developed to determine whether this parasite contains antigenic compounds capable of provoking an immune response in laboratory animals, in order to consider the possible immunopathological effects in man by the ingestion of Kudoa infected fish. BALB/c mice were injected by the subcutaneous route with the following extracts suspended in aluminium hydroxide: group 1 (black Kudoa sp. pseudocyst extract), group 2 (white Kudoa sp. pseudocyst extract), and group 3 (non-infected hake meat extract). Specific antibody levels were measured by ELISA against homologous and heterologous antigens. The highest responses were obtained from the black Kudoa sp. pseudocyst extract (group 1).The low optic density levels detected in group 3 proved that the results obtained in groups 1 and 2 were a consequence of the parasitic extract injection. The IgG1 was the predominant subclass. IgE detected in groups 1 and 2 showed the possible allergenic nature of some of the components of the parasitic extract. High IgA levels and medium IgG2a and IgG3 levels were obtained in groups 1 and 2. Low IgG2b responses were shown. No cross-reactions between Kudoa sp. pseudocyst extracts and the non-infected hake meat extract were observed.