48 resultados para RELATIVISTIC ENERGIES
Resumo:
Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
The De Broglie's relation was a fundamental step in the development of a wave nature for matter. Therefore, we have examined it from the perspective of the new atomic theory. This relation makes successful predictions of the stable energy levels for electrons orbiting a nucleus. The formulation of the de Broglie's relation is a fundamental application of the theory of wave-particle duality for a material particle. In this work, the direct demonstration employing the equations E = mc² and E = hcλ, was avoided. We provide a complete analysis of this relation considering features of the special theory of relativity.
Resumo:
We present in this educational article a theoretical analysis based on DFT/B3LYP 6-311++G (d,p) and ab initio MP2/6-311++G(d,p) computational calculation about the reactivity and the regioselectivity on the chlorination reaction of anisole, toluene and nitrobenzene, using trichloroisocyanuric acid (TICA) as donor of Cl+. The H.O.M.O. / L.U.M.O. energy and N.B.O. atomic charges of various aromatic systems were calculated in ab initio level. The energies of the reagents and intermediaries were calculated using D.F.T.. These results have been presented as a quantitative example for the S E A mechanism, in the undergraduate organic chemistry disciplines.
Resumo:
We present a theoretical study of solvent effect on C2H5N···HF hydrogen-bonded complex through the application of the AGOA methodology. By using the TIP4P model to orientate the configuration of water molecules, the hydration clusters generated by AGOA were obtained through the analysis of the molecular electrostatic potential (MEP) of solute (C2H5N···HF). Thereby, it was calculated the hydration energies on positive and negative MEP fields, which are maxima (PEMmax) and minima (PEMmin) when represent the -CH2- methylene groups and hydrofluoric acid, respectively. By taking into account the higher and lower hydration energy values of -370.6 kJ mol-1 and -74.3 kJ mol-1 for PEMmax and PEMmin of the C2H5N···HF, our analysis shows that these results corroborate the open ring reaction of aziridine, in which the preferential attack of water molecules occurs at the methylene groups of this heterocyclic.
Resumo:
The conventional approach to simple quantum chemistry models is contrasted with that known as momentum representation, where the wavefunctions are momentum dependent. Since the physical interactions are the same, state energies should not change, and whence the energy differences correlating with the real world as spectral lines or bands. We emphasize that one representation is not more fundamental than the other, and the choice is a matter of mathematical convenience. As spatial localization is rooted in our brains, to think in terms of the momentum present us a great mental challenge that can lead to complementary perspectives of a model.
Resumo:
The energies involved in the combustion, under atmosphere of oxygen, of breakfast cereals and dehydrate powdered whole milk samples, were determined by combustion calorimetry. This practical work, in the field of human nutrition, involved the characterization of the nutritional composition and the combustion of samples of the two foods that are part of the alimentary diet, namely, at breakfast. The obtained results allowed to assess the energy value printed in the foods labels and discuss the way those values are estimated.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.
Resumo:
The study of pyrolysis is gaining increasing importance, since it is the first step in the gasification or combustion process. In this study, pyrolysis experiments of cypress pine were carried out in a thermogravimetric analyzer at six different heating rates between 5 and 40 ºC / min. Kinetics parameters of pine were determined from TGA by using the differential and the maximum speed methods. Additionally, the distribution of activation energies was also carried out finding the values of 113.57 and 157.32 kJ/mol, which are in the range of activation energies reported for hemicellulose and cellulose, respectively, main components of wood.
Resumo:
The present paper aims to interpret the SO2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μm, while the calcite presents mesopores of 0.01 μm. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.
Resumo:
Mixed micellization and surface properties of cationic and nonionic surfactants dimethyl decyl-, tetradecyl- and hexadecyl phosphineoxide mixtures are studied using conductivity and surface tension measurements. The models of Rubingh, Rosen, and Clint, are used to obtain the interaction parameter, minimum area per molecule, mixed micelle composition, free energies of mixing and activity coefficients. The micellar mole fractions were always higher than ideal values indicating high contributions of cationics in mixed micelles. Activity coefficients were less than unity indicating synergism in micelles. The negative free energies of mixing showed the stability of the surfactants in the mixed micelles.
Resumo:
Density Functional Theory (DFT) calculations on the interactions of small atoms (H, C, O, and S) on first-row transition metal clusters were performed. The results show that the adsorption site may vary between the metal surface and the edge of the cluster. The adsorption energies, adatom-nearest neighbor and adatom-metal plane distances were also determined. Finally, the authors present a discussion about the performance of these metals as anodes on solid oxide fuel cells. The results obtained agree with empirical data, indicating that the theoretical model used is adequate
Resumo:
Hydrogen bond energies of fifteen dimers were calculated using the large basis set 6-311++G(3df,3pd), at Hartree-Fock (HF) level including Møller-Plesset (MP2) calculations. The procedure for obtaining such energies were based on the dimer's energy rise provoked by increasing in intermolecular distance of the system component units. Deviations from a strictly linear hydrogen bond were investigated and rotational barriers were also computed allowing the calculation of the second order attractive interactions. In order to provide a more objective definition of hydrogen bond, a lower energy limit was proposed in place of the merely empirical parameters employed in the classical definition
Resumo:
We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 °C. Activation energies (Ea) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the Ea was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
Considering intrinsic characteristics of the system exclusively, both statistical and information theory interpretations of the second law are used to provide more comprehensive meanings for the concepts of entropy, temperature, and Helmholtz and Gibbs energies. The coherence of Clausius inequality to these concepts is emphasized. The aim of this work is to re-discuss the second law of thermodynamics in accordance to homogeneous processes thermodynamics, a temporal science which is the very special oversimplification of continuum mechanics for spatially constant intensive properties.