26 resultados para REACTION MODEL
Resumo:
In this paper we describe the synthesis of 2´,4´-dimethoxy-8-(propyl-2-one)-deoxybenzoin, a new compound employed as a model for the comparison with the respective spectral data for 6',4-dihydroxy-3'-(3,3- dimethylallyl)-2",2"-dimethylchromene(5",6":5',4')-2'-methoxy-8-(propyl-2-one) deoxybenzoin, recently isolated from Deguelia hatschbachii A.M.G. Azevedo. Both compounds have a "propyl-2-one" group attached to C-8 of the deoxybenzoin skeleton, for which there is no precedent in the literature. The Friedel-Crafts reaction of 1,3-dimethoxybenzene with phenylacetyl chloride furnished 2´,4´-dimethoxydeoxybenzoin, that after reaction with allyl bromide gave 2´,4´-dimethoxy-8-(allyl)-deoxybenzoin . Wacker oxidation gave the desired model compound in 15% overall yield. The corresponding spectral data reinforced the structure previously determined for the natural product.
Resumo:
The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.
Resumo:
Transluminal coronary angioplasty is a routine therapeutic intervention in coronary heart disease. Despite the high rate of primary success, restenosis continues to be its major limitation. Porcine models have been considered to be the most adequate experimental models for studying restenosis. One limitation of porcine models is the need for radiological guidance and the expenses involved. The objective of the present study was to adapt an experimental model of angioplasty in the porcine carotid artery that does not require radiological equipment. Eight animals were used to develop the technique of balloon injury to the common carotid artery by dissection without radiological guidance. This technique was then employed in six other animals. Under anesthesia, the left common carotid artery was dissected and incised at the carotid sinus for insertion of an over-the-wire angioplasty balloon towards the aorta. Overstretch injury of the carotid artery was performed under direct visualization. After 30 days, the arteries were excised and pressure-fixated. Uninjured carotid arteries from 3 additional animals were used as controls. A decreased luminal area associated with intimal hyperplasia and medial reaction was observed in all injured arteries. Immunohistochemistry identified the intimal hyperplastic cells as smooth muscle cells. Computerized morphometry of the ballooned segments revealed the following mean areas: lumen 2.12 mm2 (± 1.09), intima 0.22 mm2 (± 0.08), media 3.47 mm2 (± 0.67), and adventitia 1.11 mm2 (± 0.34). Our experimental model of porcine carotid angioplasty without radiological guidance induced a vascular wall reaction and permitted the quantification of this response. This porcine model may facilitate the study of vascular injury and its response to pharmacological interventions
Resumo:
Polymerase chain reaction (PCR) has been widely investigated for the diagnosis of tuberculosis. However, before this technique is applied on clinical samples, it needs to be well standardized. We describe the use of McFarland nephelometer, a very simple approach to determine microorganism concentration in solution, for PCR standardization and DNA quantitation, using Mycobacterium tuberculosis as a model. Tuberculosis is an extremely important disease for the public health system in developing countries and, with the advent of AIDS, it has also become an important public health problem in developed countries. Using Mycobacterium tuberculosis as a research model, we were able to detect 3 M. tuberculosis genomes using the McFarland nephelometer to assess micobacterial concentration. We have shown here that McFarland nephelometer is an easy and reliable procedure to determine PCR sensitivity at lower costs.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions.
Resumo:
SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.
Resumo:
Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH.
Resumo:
Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma.
Resumo:
Sensory analysis was used to get an overall flavour description of a reaction mixtures containing 5'-IMP and Cysteine. Ribose/cysteine systems were used as reference systems. Results from triangle and aroma profiling show a clear correlation between the terms used and the volatile analysis described in literature for these model systems. For instance reactions at pH 3.0 and 4.5 for 5'-IMP/cysteine systems, which were described as "meaty" and "boiled meat" by panellists, presented, in the literature, the higher number of "meaty" compounds in volatile analysis (1, 7, 8, 20) .
Resumo:
Anthocyanins are the pigments responsible for the color of most red grapes and are easily degraded following various reaction mechanisms affected by oxygen, enzymes, pH, and temperature among other variables. In this study, a jam model system was developed using Merlot and Bordô grape extracts and polysaccharides (xanthan and locust bean gums) and different temperatures (45, 55 and 65 °C). The stability of the anthocyanin pigments and the rheological behavior of the jam model system were studied. For the determination of the stability, the half-life time and first-order reaction rate constants for the anthocyanin pigments were calculated. The rheological behavior was determined through the Power law model. The jam model system produced using a temperature of 45 °C showed the best results for the anthocyanin half-life time. The first-order reaction rate constants for the 45, 55, and 65 °C treatments were not significantly different among each other (p > 0.05). It was observed that with an increase in the jam model system temperature there was an increase in the index of consistency.