24 resultados para RAPIDLY PROGRESSIVE PERIODONTITIS
Resumo:
Two variants (A and B) of the widely employed Walker 256 rat tumor cells are known. When inoculated sc, the A variant produces solid, invasive, highly metastasizing tumors that cause severe systemic effects and death. We have obtained a regressive variant (AR) whose sc growth is slower, resulting in 70-80% regression followed by development of immunity against A and AR variants. Simultaneously with the beginning of tumor regression, a temporary anemia developed (~8 days duration), accompanied by marked splenomegaly (~300%) and changes in red blood cell osmotic fragility, with mean corpuscular fragility increasing from 4.1 to 6.5 g/l NaCl. The possibility was raised that plasma factors associated with the immune response induced these changes. In the present study, we identify and compare the osmotic fragility increasing activity of plasma fractions obtained from A and AR tumor bearers at different stages of tumor development. The results showed that by day 4 compounds precipitating in 60% (NH4)2SO4 and able to increase red blood cell osmotic fragility appeared in the plasma of A and AR tumor bearers. Later, these compounds disappeared from the plasma of A tumor bearers but slightly increased in the plasma of AR tumor bearers. Furthermore, by day 10, compounds precipitating between 60 and 80% (NH4)2SO4 and with similar effects appeared only in plasma of AR tumor bearers. The salt solubility, production kinetics and hemolytic activity of these compounds resemble those of the immunoglobulins. This, together with their preferential increase in rats bearing the AR variant, suggest their association with an immune response against this tumor.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
Pilocarpine-induced (320 mg/kg, ip) status epilepticus (SE) in adult (2-3 months) male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6) would generate damage and cell loss similar to that seen after a first SE (N = 9). Counts of silver-stained (indicative of cell damage) cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1) the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2) the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.
Resumo:
We investigated the effect of etoricoxib, a selective cyclooxygenase-2 inhibitor, and indomethacin, a non-selective cyclooxygenase inhibitor, on experimental periodontitis, and compared their gastrointestinal side effects. A ligature was placed around the second upper left molars of female Wistar rats (160 to 200 g). Animals (6 per group) were treated daily with oral doses of 3 or 9 mg/kg etoricoxib, 5 mg/kg indomethacin, or 0.2 mL saline, starting 5 days after the induction of periodontitis, when bone resorption was detected, until the sacrifice on the 11th day. The weight and survival rate were monitored. Alveolar bone loss (ABL) was measured as the sum of distances between the cusp tips and the alveolar bone. The gastric mucosa was examined macroscopically and the periodontium and gastric and intestinal mucosa were examined by histopathology. The ongoing ABL was significantly inhibited (P < 0.05) by 3 and 9 mg/kg etoricoxib and by indomethacin: control = 4.08 ± 0.47 mm; etoricoxib (3 mg/kg) = 1.89 ± 0.26 mm; etoricoxib (9 mg/kg) = 1.02 ± 0.14 mm; indomethacin = 0.64 ± 0.15 mm. Histopathology of periodontium showed that etoricoxib and indomethacin reduced inflammatory cell infiltration, ABL, and cementum and collagen fiber destruction. Macroscopic and histopathological analysis of gastric and intestinal mucosa demonstrated that etoricoxib induces less damage than indomethacin. Animals that received indomethacin presented weight loss starting on the 7th day, and higher mortality rate (58.3%) compared to etoricoxib (0%). Treatment with etoricoxib, even starting when ABL is detected, reduces inflammation and cementum and bone resorption, with fewer gastrointestinal side effects.
Resumo:
We evaluated changes in glucose tolerance of 17 progressors and 62 non-progressors for 9 years to improve our understanding of the pathogenesis of type 2 diabetes mellitus. Changes in anthropometric measurements and responses to an oral glucose tolerance test (OGTT) were analyzed. We identified 14 pairs of individuals, one from each group, who were initially normal glucose tolerant and were matched for gender, age, weight, and girth. We compared initial plasma glucose and insulin curves (from OGTT), insulin secretion (first and second phases) and insulin sensitivity indices (from hyperglycemic clamp assay) for both groups. In the normal glucose tolerant phase, progressors presented: 1) a higher OGTT blood glucose response with hyperglycemia in the second hour and a similar insulin response vs non-progressors; 2) a reduced first-phase insulin secretion (2.0 ± 0.3 vs 2.3 ± 0.3 pmol/L; P < 0.02) with a similar insulin sensitivity index and a lower disposition index (3.9 ± 0.2 vs 4.1 ± 0.2 µmol·kg-1·min-1 ; P < 0.05) vs non-progressors. After 9 years, both groups presented similar increases in weight and fasting blood glucose levels and progressors had an increased glycemic response at 120 min (P < 0.05) and reduced early insulin response to OGTT (progressors, 1st: 2.10 ± 0.34 vs 2nd: 1.87 ± 0.25 pmol/mmol; non-progressors, 1st: 2.15 ± 0.28 vs 2nd: 2.03 ± 0.39 pmol/mmol; P < 0.05). Theses data suggest that β-cell dysfunction might be a risk factor for type 2 diabetes mellitus.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
The purpose of this study was to investigate the behavior of heart rate (HR) and HR variability (HRV) during different loads of resistance exercise (incline bench press) in patients with coronary artery disease (CAD) and healthy sedentary controls. Ten healthy men (65 ± 1.2 years, control group, CG) and 10 men with clinically stable CAD (66 ± 2.4 years, CADG) were recruited. A discontinuous progressive protocol was applied with an initial load of 10% of the maximum load achieved in the 1RM (1 repetition maximum) with increases of 10% until 30% 1RM was reached, which was followed by subsequent increases of 5% 1RM until exhaustion. HRV was analyzed by linear and non-linear methods. There was a significant reduction in rMSSD (CG: 20 ± 2 to 11 ± 3 ms; CADG: 19 ± 3 to 9 ± 1 ms) and SD1 indexes (CG: 14 ± 2 to 8 ± 1 ms; CADG: 14 ± 2 to 7 ± 1 ms). An increase in HR (CG: 69 ± 5 to 90 ± 5 bpm; CADG: 62 ± 4 to 75 ± 4 bpm) and in systolic blood pressure (CG: 124 ± 3 to 138 ± 3 mmHg; CADG: 122 ± 6 to 126 ± 9 bpm) were observed (P < 0.05) when comparing pre-effort rest and 40% 1RM in both groups. Furthermore, an increase in RMSM index was also observed (CG: 28 ± 3 to 45 ± 9 ms; CADG: 22 ± 2 to 79 ± 33 ms), with higher values in CADG. We conclude that loads up to 30% 1RM during incline bench press result in depressed vagal modulation in both groups, although only stable CAD patients presented sympathetic overactivity at 20% 1RM upper limb exercise.
Severity score system for progressive myelopathy: development and validation of a new clinical scale
Resumo:
Progressive myelopathies can be secondary to inborn errors of metabolism (IEM) such as mucopolysaccharidosis, mucolipidosis, and adrenomyeloneuropathy. The available scale, Japanese Orthopaedic Association (JOA) score, was validated only for degenerative vertebral diseases. Our objective is to propose and validate a new scale addressing progressive myelopathies and to present validating data for JOA in these diseases. A new scale, Severity Score System for Progressive Myelopathy (SSPROM), covering motor disability, sphincter dysfunction, spasticity, and sensory losses. Inter- and intra-rater reliabilities were measured. External validation was tested by applying JOA, the Expanded Disability Status Scale (EDSS), the Barthel index, and the Osame Motor Disability Score. Thirty-eight patients, 17 with adrenomyeloneuropathy, 3 with mucopolysaccharidosis I, 3 with mucopolysaccharidosis IV, 2 with mucopolysaccharidosis VI, 2 with mucolipidosis, and 11 with human T-cell lymphotropic virus type-1 (HTLV-1)-associated myelopathy participated in the study. The mean ± SD SSPROM and JOA scores were 74.6 ± 11.4 and 12.4 ± 2.3, respectively. Construct validity for SSPROM (JOA: r = 0.84, P < 0.0001; EDSS: r = -0.83, P < 0.0001; Barthel: r = 0.56, P < 0.002; Osame: r = -0.94, P < 0.0001) and reliability (intra-rater: r = 0.83, P < 0.0001; inter-rater: r = 0.94, P < 0.0001) were demonstrated. The metric properties of JOA were similar to those found in SSPROM. Several clinimetric requirements were met for both SSPROM and JOA scales. Since SSPROM has a wider range, it should be useful for follow-up studies on IEM myelopathies.
Resumo:
Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens.