22 resultados para Réseau de co-expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was the transformation of tobacco and 'Valencia' sweet orange with the GUS gene driven by the citrus phenylalanine ammonia-lyase (PAL) gene promoter (CsPP). Transformation was accomplished by co-cultivation of tobacco and 'Valência' sweet orange explants with Agrobacterium tumefaciens containing the binary vector CsPP-GUS/2201. After plant transformation and regeneration, histochemical analyses using GUS staining revealed that CsPP promoter preferentially, but not exclusively, conferred gene expression in xylem tissues of tobacco. Weaker GUS staining was also detected throughout the petiole region in tobacco and citrus CsPP transgenic plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intercellular communication may be regulated by the differential expression of subunit gap junction proteins (connexins) which form channels with differing gating and permeability properties. Endothelial cells express three different connexins (connexin37, connexin40, and connexin43) in vivo. To study the differential regulation of expression and synthesis of connexin37 and connexin43, we used cultured bovine aortic endothelial cells which contain these two connexins in vitro. RNA blots demonstrated discordant expression of these two connexins during growth to confluency. RNA blots and immunoblots showed that levels of these connexins were modulated by treatment of cultures with transforming growth factor-ß1. To examine the potential ability of these connexins to form heteromeric channels (containing different connexins within the same hemi-channel), we stably transfected connexin43-containing normal rat kidney (NRK) cells with connexin37 or connexin40. In the transfected cells, both connexin proteins were abundantly produced and localized in identical distributions as detected by immunofluorescence. Double whole-cell patch-clamp studies showed that co-expressing cells exhibited unitary channel conductances and gating characteristics that could not be explained by hemi-channels formed of either connexin alone. These observations suggest that these connexins can readily mix with connexin43 to form heteromeric channels and that the intercellular communication between cells is determined not only by the properties of individual connexins, but also by the interactions of those connexins to form heteromeric channels with novel properties. Furthermore, modulation of levels of the co-expressed connexins during cell proliferation or by cytokines may alter the relative abundance of different heteromeric combinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that rats withdrawn from long-term treatment with dopamine receptor blockers exhibit dopaminergic supersensitivity, which can be behaviorally evaluated by enhanced general activity observed in an open-field. Recently, it has been reported that co-treatment with the non-benzodiazepine anxiolytic buspirone attenuates the development of haloperidol-induced dopaminergic supersensitivity measured by open-field behavior of rats. The aims of the present study were: 1) to determine, as previously reported for rats, if mice withdrawn from long-term neuroleptic treatment would also develop dopaminergic supersensitivity using open-field behavior as an experimental paradigm, and 2) to examine if acute buspirone administration would attenuate the expression of this behavioral dopaminergic supersensitivity. Withdrawal from long-term haloperidol treatment (2.5 mg/kg, once daily, for 20 days) induced a significant (30%) increase in ambulation frequency (i.e., number of squares crossed in 5-min observation sessions) but did not modify rearing frequency or immobility duration in 3-month-old EPM-M1 male mice observed in the open-field apparatus. Acute intraperitoneal injection of buspirone (3.0 and 10 but not 1.0 mg/kg, 12-13 animals per group) 30 min before open-field exposure abolished the increase in locomotion frequency induced by haloperidol withdrawal. These data suggest that the open-field behavior of mice can be used to detect dopaminergic supersensitivity, whose expression is abolished by acute buspirone administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67%, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.