31 resultados para Quasi-Static And Dynamic Method
Resumo:
Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.
Resumo:
In this paper, we carry out a study on the process of sorption of lead in polluted waters usingnatural zeolites, with the objective of analyzing their behavior in the purification of water.Experiments are carried out under static and dynamic conditions to determine the influence of other metal ions, such as: Ca (II), Mg (II), K (I) and Na (I), on this process. We demonstrate that the affinity of Pb (II) with regard to zeolite is higher than that of the ions mentioned above. It allows us to use this material in the capture of lead in residual waters. A lineal model of regression was obtained using a computer program called Eureka which relates the capacity of interchange of zeolite with respect to the concentration of the metal ions present in waters. We also studied the selectivity of zeolite in the process of sorption of Pb (II) compared with other heavy metals like Zn (II) and Cd (II).The results achieved in both cases increase the expectancy about the usage of zeolite as a low cost material for purifing waters.
Resumo:
One of the problems that slows the development of off-line programming is the low static and dynamic positioning accuracy of robots. Robot calibration improves the positioning accuracy and can also be used as a diagnostic tool in robot production and maintenance. A large number of robot measurement systems are now available commercially. Yet, there is a dearth of systems that are portable, accurate and low cost. In this work a measurement system that can fill this gap in local calibration is presented. The measurement system consists of a single CCD camera mounted on the robot tool flange with a wide angle lens, and uses space resection models to measure the end-effector pose relative to a world coordinate system, considering radial distortions. Scale factors and image center are obtained with innovative techniques, making use of a multiview approach. The target plate consists of a grid of white dots impressed on a black photographic paper, and mounted on the sides of a 90-degree angle plate. Results show that the achieved average accuracy varies from 0.2mm to 0.4mm, at distances from the target from 600mm to 1000mm respectively, with different camera orientations.
Resumo:
The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers) was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic), monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied), which leads to an increase in the area per headgroup and also in the loss of counterion affinities
Resumo:
Diabetic neuropathy is an important complication of the disease, responsible for ulceration and amputation of the foot. Prevention of these problems is difficult mainly because there is no method to correctly access sensibility on the skin of the foot. The introduction of the Pressure-Specified Sensory Device (PSSD TM) in the last decade made possible the measurement of pressure thresholds sensed by the patient, such as touch, both static and in movement, on a continuous scale. This paper is the first in Brazil to report the use of this device to measure cutaneous sensibility in 3 areas of the foot: the hallux pulp, the calcaneus, and the dorsum, which are territories of the tibial and fibular nerves. METHOD: Non-diabetic patients were measured as controls, and 2 groups of diabetic patients - with and without ulcers - were compared. The PSSD TM was used to test the 3 areas described above. The following were evaluated: 1 PS (1-point static), 1 PD (1-point dynamic), 2 PS (2-points static), 2 PD (2-points dynamic). RESULTS: The diabetic group had poorer sensibility compared to controls and diabetics with ulcers had poorer sensibility when compared to diabetics without ulcers. The differences were statistically significant (P <.001). CONCLUSION: Due to the small number of patients compared, the results should be taken as a preliminary report.
Resumo:
A single and practical method to slain Malassezia furfur and Corynebacterium minutissimum in lesions' scales is described. The scales are collected by pressing small pieces of scotch tape (about 4 cm lenght and 2 cm width) onto the lesions and following withdrawl the furfuraceous scales will remain on the glue side. These pieces are then immersed for some minutes in lactophenol-cotton blue stain. Following absorption of the stain the scales are washed in current water to remove the excess of blue stain, dried with filter paper, dehydrated via passage in two bottles containing absolute alcohol and then placed in xylene in a centrifugation tube. The xylene dissolves the scotch tape glue and the scales fall free in the tube. After centrifugation and decantation the scales concentrated on the bottom of the tube are collected with a platinum-loop, placed in Canada balsam on a microscopy slide and closed with a cover slip. The preparations are then ready to be submitted to microscopic examination. Other stains may also be used instead of lactophenol-cotton blue. This method is simple, easily performed, and offers good conditions to study these fungi as well as being useful for the diagnosis of the diseases that they cause.
Resumo:
Participation in intensive sports activities leads to muscular specializations that may generate alterations in involved articular forces and cause static (posture) and dynamic changes (alterations of articular stability, coordination, etc.). Prevention of injury requires specific functional muscular evaluation in all athletes and for any kind of sport. OBJECTIVE: To dynamically evaluate, through isokinetic tests, the peak torque, total work, and average power of the knee flexor and extensor muscles of jumper and runner athletes and compare them to those of a non-athletic population, evaluating dominance and balance between agonistic and antagonistic muscle groups. RESULTS: In the non-athlete group, we noted a higher asymmetry between the dominant and nondominant members. The jumpers had the highest values of the evaluated parameters of all groups, whereas parameters for the runners were intermediate between non-athletes and jumpers.
Resumo:
Mycolic acids analysis by thin-layer chromatography (TLC) has been employed by several laboratories worldwide as a method for fast identification of mycobacteria. This method was introduced in Brazil by our laboratory in 1992 as a routine identification technique. Up to the present, 861 strains isolated were identified by mycolic acids TLC and by standard biochemical tests; 61% out of these strains came as clinical samples, 4% isolated from frogs and 35% as environmental samples. Mycobacterium tuberculosis strains identified by classical methods were confirmed by their mycolic acids contents (I, III and IV). The method allowed earlier differentiation of M. avium complex - MAC (mycolic acids I, IV and VI) from M. simiae (acids I, II and IV), both with similar biochemical properties. The method also permitted to distinguish M. fortuitum (acids I and V) from M. chelonae (acids I and II) , and to detect mixed mycobacterial infections cases as M. tuberculosis with MAC and M. fortuitum with MAC. Concluding, four years experience shows that mycolic acids TLC is an easy, reliable, fast and inexpensive method, an important tool to put together conventional mycobacteria identification methods.
Resumo:
The aim of this study was to investigate the performance of a new and accurate method for the detection of isoniazid (INH) and rifampicin (RIF) resistance among Mycobacterium tuberculosis isolates using a crystal violet decolourisation assay (CVDA). Fifty-five M. tuberculosis isolates obtained from culture stocks stored at -80ºC were tested. After bacterial inoculation, the samples were incubated at 37ºC for seven days and 100 µL of CV (25 mg/L stock solution) was then added to the control and sample tubes. The tubes were incubated for an additional 24-48 h. CV (blue/purple) was decolourised in the presence of bacterial growth; thus, if CV lost its colour in a sample containing a drug, the tested isolate was reported as resistant. The sensitivity, specificity, positive predictive value, negative predictive value and agreement for INH were 92.5%, 96.4%, 96.1%, 93.1% and 94.5%, respectively, and 88.8%, 100%, 100%, 94.8% and 96.3%, respectively, for RIF. The results were obtained within eight-nine days. This study shows that CVDA is an effective method to detect M. tuberculosis resistance to INH and RIF in developing countries. This method is rapid, simple and inexpensive. Nonetheless, further studies are necessary before routine laboratory implementation.
Resumo:
This work aimed the development and validation of a new dissolution test for ornidazole coated tablets. The dissolution conditions were determined after testing Sink conditions, dissolution medium, apparatus, stirring speed, 24 h stability and medium filtration influence. The best conditions were paddle at a stirring speed of 75 rpm and 900 mL of 0.1 M HCl. A new HPLC quantification method was developed and validated. The dissolution test and quantification method showed to be adequate for their purposes and could be applied for quality control of ornidazole coated tablets, since there is no official monograph.
Resumo:
A rapid, economical, reproducible, and simple direct spectrophotometric method was developed and validated for the assay of nitazoxanide in pharmaceutical formulations. Nitazoxanide concentration was estimated in water at 345 nm and pH 4.5. The method was suitable and validated for specificity, linearity, precision, and accuracy. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. The proposed method was successfully applied in the determination of nitazoxanide in coated tablets and in powders for oral suspension. This method was compared to a previously developed and validated method for liquid chromatography to the same drug. There was no significative difference between these methods for nitazoxanide quantitation.
Resumo:
MgO is an important inorganic material, which can be used in many aspects, such as catalyst, toxic-waste remediation agent, adsorbent, and others. In order to make use of MgO, nano-MgO was prepared by ultrasonic method using Mg (CH3COO)2.2H2O as precursor, NaOH aqueous solution as precipitant in this paper. Effect factors on MgO nano-particle size were investigated. Characteristics of samples were measured by TGA, XRD, TEM, and others techniques. The results showed that the size of nano-MgO about 4 nm could be obtained under the following conditions (ultrasonic time 20 min, ultrasonic power 250 W, titration rate of NaOH 0.25 mL/min, NaOH concentration 0.48 mol/L, calcinations temperature 410 °C, calcination time 1.5 h, heating rate of calcination 5 °C/min). It was a very simple and effective method to prepare nano-MgO.
Resumo:
In order to verify Point-Centered Quarter Method (PCQM) accuracy and efficiency, using different numbers of individuals by per sampled area, in 28 quarter points in an Araucaria forest, southern Paraná, Brazil. Three variations of the PCQM were used for comparison associated to the number of sampled individual trees: standard PCQM (SD-PCQM), with four sampled individuals by point (one in each quarter), second measured (VAR1-PCQM), with eight sampled individuals by point (two in each quarter), and third measuring (VAR2-PCQM), with 16 sampled individuals by points (four in each quarter). Thirty-one species of trees were recorded by the SD-PCQM method, 48 by VAR1-PCQM and 60 by VAR2-PCQM. The level of exhaustiveness of the vegetation census and diversity index showed an increasing number of individuals considered by quadrant, indicating that VAR2-PCQM was the most accurate and efficient method when compared with VAR1-PCQM and SD-PCQM.
Resumo:
Coherent vortices in turbulent mixing layers are investigated by means of Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Subgrid-scale models defined in spectral and physical spaces are reviewed. The new "spectral-dynamic viscosity model", that allows to account for non-developed turbulence in the subgrid-scales, is discussed. Pseudo-spectral methods, combined with sixth-order compact finite differences schemes (when periodic boundary conditions cannot be established), are used to solve the Navier- Stokes equations. Simulations in temporal and spatial mixing layers show two types of pairing of primary Kelvin-Helmholtz (KH) vortices depending on initial conditions (or upstream conditions): quasi-2D and helical pairings. In both cases, secondary streamwise vortices are stretched in between the KH vortices at an angle of 45° with the horizontal plane. These streamwise vortices are not only identified in the early transitional stage of the mixing layer but also in self-similar turbulence conditions. The Re dependence of the "diameter" of these vortices is analyzed. Results obtained in spatial growing mixing layers show some evidences of pairing of secondary vortices; after a pairing of the primary Kelvin-Helmholtz (KH) vortices, the streamwise vortices are less numerous and their diameter has increased than before the pairing of KH vortices.
Resumo:
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.