22 resultados para Polyurethane hemimandibles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic foams were produced from a sludge generated in the aluminum anodizing process by using an industrial polyurethane foam (replication method) with open cell sizes of 10 ± 5 ppi (porosity = 97%) which were impregnated with suspensions containing 50-61 wt.% alumina, 1 wt.% citric acid, 6 wt.% bentonite and fired at 1600 ºC for 2 h. The aluminum anodizing sludge shows a high alumina content (87.5 wt.%) and a low particle size (~1.7 mm) after calcination and milling. The obtained filters show porosity of approximately 70%, filtration capability (mass water flow) of 1.7 kg/s and mechanical strength under compression of 2.40 MPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the preparation of polyurethane adhesives using polyols obtained from castor oil modified by a transesterification reaction with pentaerythritol and starch modified by glycosylation. The physical properties of the polyols such as hydroxyl value were determined and the infrared spectroscopic analysis of the polyols reported. The effect of varying the hydroxyl value in the polyols on physical properties of polyurethane coatings on wood and steel panels was determined. The characterization of polyurethane coatings carried out by IR spectroscopic analysis, scratch hardness resistance, impact resistance, lap shear strength, T-peel strength measurements, solvent resistance and chemical resistant determination were reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to synthesize a polyurethane polymer matrix using castor oil as a polymer chain modifier, whose characteristics can be adjusted for use as a binder in the manufacture of energetic materials such as propellant and pyrotechnics for aerospace use. We attempted the partial substitution of hydroxyl-terminated polybutadiene (HTPB), a pre-polymer commonly used as a starting polyol in obtaining energetic matrix composites. Thermoanalytical techniques were employed to characterize the material based on castor oil and the unmodified HTPB. The results showed similar behaviors, confirming the possibility of their use as polymer matrix composites through the proposed adaptations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to synthesize a polyurethane polymer matrix using polyols as a raw material to obtain a binder such as the hydroxyl terminated polybutadiene (HTPB) pre-polymer in energetic material formulation. The soybean-based polyol was the best starting raw material for producing a binder for solid fuel formulation in rocket motor applications. Characterization of the obtained soybean-based polyurethane binder was carried out by employing FT-IR analysis and thermo analytical techniques that showed similar HTPB binder thermo decomposition behaviors, confirming their potential for use as polymer matrix composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work is proposed a solid phase preconcentration system of Co2+ ions and its posterior determination by GFAAS in which fractional factorial design and response surface methodology (RSM) were used for optimization of the variables associated with preconcentration system performance. The method is based on cobalt extraction as a complex Co2+-PAN (1:2) in a mini-column of polyurethane foam (PUF) impregnated with 1-(2-pyridylazo)-naphthol (PAN) followed by elution with HCl solution and its determination by GFAAS. The chemical and flow variables studied were pH, buffer concentration, eluent concentration and preconcentration and elution flow rates. Results obtained from fractional factorial design 2(5-1) showed that only the variables pH, buffer concentration and interaction (pH X buffer concentration) based on analysis of variance (ANOVA) were statistically significant at 95% confidence level. Under optimised conditions, the method provided an enrichment factor of 11.6 fold with limit of detection and quantification of 38 and 130 ng L-1, respectively, and linear range varying from 0.13 to 10 µg L-1. The precision (n = 9) assessed by relative standard deviation (RSD) was respectively 5.18 and 2.87% for 0.3 and 3.0 µg L-1 cobalt concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The integration of fish farming in intensive system and plant production, called "aquaponics" is practiced successfully in countries like the USA, Australia and Europe. In Brazil, this integration has attracted the attention of researchers and producers. In this context, the aim of this study was to evaluate the effect of two substrates (crushed stone number 3, CS III and flexible polyurethane foam, FPF) on the production of aquaponic lettuce, moreover, to show that the residual water from intensive tilapia production provides sufficient qualitative characteristics for competitive production of lettuce without adding commercial fertilizers. The treatment in which FPF was used provided higher concentrations of macro and micronutrients in the shoots, higher production of fresh matter of shoots (95.48 g plant-1) and a larger number of leaves (14.90) relative to CS III. These results were attributed to the lower post-transplanting stress and the higher water retention time provided by the FPF. The residual water from tilapia intensive farming can provide sufficient nutrients for the production of lettuce, making the supplementary fertilization with commercial products unnecessary. Thus, the FPF presents the most suitable conditions to be used as substrate in aquaponics system with recirculation of the residual water from the intensive tilapia farming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adherence of Pseudomonas fluorescens cells to nine food-processing contact surfaces was evaluated using the plate-count method. The surfaces include marble, granite, stainless steel, polyvinyl chloride, polyurethane, and silicone-coated cloth, which have been used only in a few studies concerning bacterial adherence. The number of cells adhered to the surfaces increased with contact time reaching 5.0-6.1 log CDM.cm-2 after 10 hours, which can be considered a well established adherence process. The number of adhered cells doubled in 29.5 minutes and 23.5 minutes on stainless steel and thin polyvinyl chloride-coated cloth, respectively. For the other surfaces, this value was 9.8 minutes on average. Marble, granite, thick polyvinyl-coated cloth, double-faced rugous polyurethane, and silicone-coated cloth were not different (p < 0.05) in their ability to adhere cells (CFU/cm²) after 2 and 10 hours. The surfaces that had higher percentage of similarity in the adhesion level and higher log CFU/cm² of adhered cells were double-faced rugous polyurethane, silicone-coated cloth, and granite. The surfaces showed very different microtopography characteristics when viewed using scanning electron microscopy. This experiment showed the importance of using appropriate materials for food contact during processing, which will affect the cleaning and sanitation procedures.