262 resultados para Phototrophic cultivation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina') under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT), between the wheel tracks (BWT), and in the area under the line projection of the canopy (CLP), with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf) in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT), which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa ), soybean (Glycine max ), common vetch (Vicia sativa ), maize (Zea mays ), fodder radish (Raphanus sativus ), and black beans (Phaseolus vulgaris ). The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improper land use has lead to deterioration and depletion of natural resources, as well as a significant decline in agricultural production, due to decreased soil quality. Removal of native vegetation to make way for agricultural crops, often managed inadequately, results in soil disruption, decreased nutrient availability, and decomposition of soil organic matter, making sustainable agricultural production unviable. Thus, the aim of the present study was to evaluate the impact of growing irrigated mango (over a 20 year period) on the organic carbon (OC) stocks and on the fractions of soil organic matter (SOM) in relation to the native caatinga (xeric shrubland) vegetation in the Lower São Francisco Valley region, Brazil. The study was carried out on the Boa Esperança Farm located in Petrolina, Pernambuco, Brazil. In areas under irrigated mango and native caatinga, soil samples were collected at the 0-10 and 10-20 cm depths. After preparing the soil samples, we determined the OC stocks, carbon of humic substances (fulvic acid fractions, humic acid fractions, and humin fractions), and the light and heavy SOM fractions. Growing irrigated mango resulted in higher OC stocks; higher C stocks in the fulvic acid, humic acid, and humin fractions; and higher C stocks in the heavy and light SOM fraction in comparison to nativecaatinga, especially in the uppermost soil layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Cassava (Manihot esculenta Crantz) is a highly mycotrophic crop, and prior soil cover may affect the density of arbuscular mycorrhizal fungi (AMFs), as well as the composition of the AMFs community in the soil. The aim of this study was to evaluate the occurrence and the structure of AMFs communities in cassava grown after different cover crops, and the effect of the cover crop on mineral nutrition and cassava yield under an organic farming system. The occurrence and structure of the AMFs community was evaluated through polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A randomized block experimental design was used with four replications. Six different cover crop management systems before cassava were evaluated: black oats, vetch, oilseed radish, intercropped oats + vetch, intercropped oats + vetch + oilseed radish, plus a control (fallow) treatment mowed every 15 days. Oats as a single crop or oats intercropped with vetch or with oilseed radish increased AMFs inoculum potential in soil with a low number of propagules, thus benefiting mycorrhizal colonization of cassava root. The treatments did not affect the structure of AMFs communities in the soil since the AMFs communities were similar in cassava roots in succession to different cover crops. AMFs colonization was high despite high P availability in the soil. The cassava crop yield was above the regional average, and P levels in the leaves were adequate, regardless of which cover crop treatments were used. One cover crop cycle prior to the cassava crop was not enough to observe a significant response in variables, P in plant tissue, crop yield, and occurrence and structure of AMFs communities in the soil. In the cassava roots in succession, the plant developmental stage affected the groupings of the structure of the AMF community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of organic and conventional coffee crops on biomass, population density and diversity of earthworms, in Lerroville, district of Londrina County, Paraná state, Brazil. Earthworm communities were sampled in three areas with organic coffee cultivation (CO1, CO2 and CO3), two with conventional coffee (CC1 and CC2), and a native forest fragment (MT). The soil of the areas CO1, CC1, and MT was classified as Nitossolo Vermelho (Rhodic Kandiudox), while CO2, CO3, and CC2 were on Latossolo Vermelho (Rhodic Hapludox). Eight samples were taken in each area on two occasions, winter and summer, using the Tropical Soil Biology and Fertility (TSBF) method in the 0-20 cm soil layer. The earthworms were handsorted and preserved in 4% formaldehyde, and were later weighed, counted and identified. The highest earthworm biomass, both in winter and summer, occurred in the CO3 area. For population density, the higher numbers of individuals were found in CO1 and CO3. The highest number of species was identified in the organic cultivation. The adoption of organic practices in coffee cultivation favored the diversity, density and biomass of earthworm communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purposes of this study were to determine the distribution and climatic patterns of current and future physic nut (Jatropha curcas) cultivation regions in Mexico, and to identify possible locations for in vivo germplasm banks establishment, using geographic information systems. Current climatic data were processed by Floramap software to obtain distribution maps and climatic patterns of regions where wild physic nuts could be found. DIVA-GIS software analyzed current climatic data (Worldclim model) and climatic data generated by CCM3 model to identify current and future physic nut cultivation regions, respectively. The distribution map showed that physic nut was present in most of the tropical and subtropical areas of Mexico, which corresponded to three agroclimatic regions. Climate types were Aw2, Aw1, and Bs1, for regions 1, 2 and 3, respectively. Nontoxic genotypes were associated with region 2, and toxic genotypes were associated with regions 1 and 3. According to the current and future cultivation regions identified, the best suitable ones to establish in vivo germplasm collections were the coast of Michoacán and the Isthmus of Tehuantepec, located among the states of Veracruz, Oaxaca and Chiapas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the effect of different coffee organic cultivation systems on chemical and biological soil characteristics, in different seasons of the year. The following systems were evaluated: coffee intercropped with one (CJ1), two (CJ2) or three (CJ3) pigeon pea (Cajanus cajan) alleys; coffee planted under full sun (CS); area planted with sweet pepper and snap bean in a conventional tillage system (AC); and secondary forest area (FFR). Row spacing in CJ1, CJ2, CJ3 and CS was 2.0x1.0, 2.8x1.0, 3.6x1.0, and 2.8x1.0 m, respectively. Soil samples were collected at 10-cm depth, during the four seasons of the year. The results were subjected to analysis of variance, principal component analysis, and redundancy analysis. There was an increase in edaphic macrofauna, soil basal respiration, and microbial quotient in the summer. Total macrofauna density was greater in CJ2 followed by CJ3, CS, CJ1, AC and FFR; Coleoptera, Formicidae, and Isoptera were the most abundant groups. There are no significant differences among the areas for soil basal respiration, and the metabolic quotient is higher in CJ1, CJ3, and FFR. Microbial biomass carbon and the contents of K, pH, Ca+Mg, and P show greater values in AC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of six bacterial strains isolated from Agaricus blazei (ABM) on its cultivation. The six strains were characterized as to their effects on the productivity, polysaccharide-protein complex (PSPC), and polysaccharide contents of ABM cultured on sterilized casing soils. Three isolates enhanced ABM mycelium growth. Inoculation of Arthrobacter sp. or Exiguobacterium sp. on sterile peat casing soil resulted in 64% increase in ABM mushroom total fresh matter yield compared to the uninoculated control. Inoculation of Exiguobacterium sp., Microbacterium esteraromaticum or Pseudomonas resinovorans on sterilized loamy casing soil resulted in 62, 95, and 59% increase in ABM mushroom total fresh matter yield, respectively. The PSPC content in ABM increased 7 to 10% in casing soil inoculated with five of the six isolates compared to the uninoculated control. Exiguobacterium sp. inoculated on casing soil resulted in a mushroom-polysaccharide content 15% higher than the control. Moreover, inoculation of five of the six isolates on the casing soil reduced the harvesting time from 10 to 27 days. The evaluated beneficial microbes improve the yield, PSPC, and polysaccharide contents, besides reducing the harvesting time in ABM culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the temperature increase forecasted by the Intergovernmental Panel on Climate Change (IPCC) on agricultural zoning of cotton production in Brazil. The Northeastern region showed the highest decrease in the low-risk area for cotton cultivation due to the projected temperature increase. This area in the Brazilian Northeast may decrease from 83 million ha in 2010 to approximately 71 million ha in 2040, which means 15% reduction in 30 years. Southeastern and Center-Western regions had small decrease in areas suitable for cotton production until 2040, while the Northern region showed no reduction in these areas. Temperature increase will not benefit cotton cultivation in Brazil because dimension of low-risk areas for economic cotton production may decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the feasibility of different agro-residues as a carbon source in the fruiting substrates of Flammulina velutipesmushroom and the effect of supplementation with the nitrogen sources spent brewer's yeast and rice bran. The following fruiting substrates were evaluated: rubber wood sawdust (SD), paddy straw (PS), palm empty fruit bunches (EFB), and palm-pressed fiber (PPF). Cultivation was done on each agro-residue, based on formulations consisting of two substrates at the ratios of 3:1, 1:1, and 1:3. Mycelial growth rate and basidiocarp yield were evaluated. The best fruiting substrates were PS+EFB (25:75), PS+PPF (50:50), and PPF (100), with biological efficiency of 185.09±36.98, 150.89±50.35, and 129.06±14.51%, respectively. No significant effects of supplementation with rice bran and spent yeast were observed on mycelial growth rate and biological efficiency. The cultivation of F. velutipes on oil palm wastes does not require additional nitrogen sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study highlighted the effect of planting coast-cross grass and forage peanut cv. Amarilis between rows of Natal oranges on spreading of Guignardia citricarpa ascospores and consequent citrus black spot control. Treatments evaluated were: 1- conventional cultivation, free of fungicides; 2- conventional cultivation, using protective fungicides; 3- inter-crop cultivation of coast-cross grass between rows of citrus crops and; 4- inter-cropping cultivation of forage peanut between the rows of citrus crops. Quest Volumetric Spore SystemTM traps were set in order to determine the number of ascospores released. A total of 33 inspections were conducted weekly, from the end of August until early September the following year. A diagrammatic scale was used to determine the severity of the disease as well as the percentage of fruits having a commercial standard. The coast-cross grass was more effective in reducing the number of ascospores produced, whose average statistics were lower than in the conventional treatments, free-fungicides. The inter-crop and conventional cultivation method coupled with fungicide treatment was more effective in reducing the severity of citrus black spot symptoms, and differs statistically from the fungicide-free control method. These methods also resulted in a higher percentage of fruits of a commercial standard, ranging from the 89% through the 91% percentile, and the cultivation, free of fungicides, fell within the 73%.