38 resultados para Photothermal spectroscopy of liquids
Resumo:
Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in Brazil, even considering the enormous potential of their applications, and their use in several techniques, such as chromatography (SFC) and supercritical fluid extration (SFE). This article series is intended to discuss the historical evolution, instrumentation features and potential and limitations of the supercritical fluid use in analytical chemistry. A special focus will be centered on chromatography and extration techniques using supercritical fluids.
Resumo:
A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Resumo:
This work describes the evolution of temperature measurement in the last four centuries using thermometers based on the thermal expansion of liquids such as ethyl alcohol and mercury. The concept of temperature was strongly dependent on the researcher and there was no systematic temperature scale for universal use. The precursor of the common thermometer was the thermoscope, probably invented at the end of the XVIth century. In the XVIIIth century the instrument was greatly improved and several thermometric scales were proposed some of which have been in use until now. These scales were based on arbitrary points. Mercury and ethyl alcohol were the most employed thermometric fluids. In the XIXth century, the concept of absolute zero was a great advance in this field. The most important contribution during the XXth century was the establishment of international temperature scales. The design of the thermometer has been essentially the same along the last 300 years, but many models were proposed for industrial and research purposes. Its association with the densimeter was of great importance for control of industrial chemical processes and also for teaching purposes in the past. Nowadays, there is a clear tendency to replace mercury-based thermometers by electronic digital models. Thermochemistry is the natural relationship between temperature and chemistry.
Resumo:
The high cost of sensitivity commercial calorimeters may represent an obstacle for many calorimetric research groups. This work describes the construction and calibration of a batch differential heat conduction calorimeter with sample cells volumes of about 400 μL. The calorimeter was built using two small high sensibility square Peltier thermoelectric sensors and the total cost was estimated to be about US$ 500. The calorimeter was used to study the excess enthalpy of solution of binary mixtures of liquids, as a function of composition, for the following binary systems of solvents: water + 1,4-dioxane or + dimethylsulfoxide at 298,2 ± 0,5 K.
Resumo:
The objective of this work was to study the gastric emptying (GE) of liquids in fasted and sucrose-fed rats with toxic hepatitis induced by acetaminophen. The GE of three test meals (saline, glucose and mayonnaise) was evaluated in Wistar rats. For each meal, the animals were divided into two groups (N = 24 each). Group I was fed a sucrose diet throughout the experiment (66 h) while group II was fasted. Forty-two hours after the start of the experiment, each group was divided into two subgroups (N = 12 each). Subgroup A received a placebo and subgroup B was given acetaminophen (1 g/kg). Twenty-four hours later, the GE of the three test meals was assessed and blood samples were collected to measure the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and acetaminophen. In group IB, the mean AST and ALT values were 515 and 263 IU/l, respectively, while for group IIB they were 4014 and 2472 IU/l, respectively. The mean serum acetaminophen levels were higher in group IIB (120 µg/ml) than in group IB (87 µg/ml). The gastric retention values were significantly higher in group IIB than in group IIA for all three test meals: saline, 51 vs 35%; glucose, 52 vs 38% and mayonnaise, 51 vs 29% (median values). The correlation between gastric retention and AST levels was significant (P<0.05) for group IIB for the three test meals: r = 0.73, 0.67 and 0.68 for saline, glucose and mayonnaise, respectively. We conclude that GE is altered in rats with hepatic lesions induced by acetaminophen, and that these alterations may be related to the liver cell necrosis caused by the drug.
Resumo:
Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.
Resumo:
In the Earth's carbon cycle, C stocks in the soil are higher than in vegetation and atmosphere. Maintaining and conserving organic C concentrations in the soil by specific management practices can improve soil fertility and productivity. The aim of this study was to evaluate the impact of agricultural management techniques and influence of water regime (flooded or drained) on the structure of humic substances by excitation/emission matrix fluorescence. Six samples of a Planosol (Planossolo by the Brazilian System of Soil Classification) were collected from a rice field. Humic substances (HS) were extracted from flooded and drained soil under different agricultural management techniques: conventional tillage, reduced tillage and grassland. Two peaks at a long emission wavelength were observed in the EEM spectra of HA whereas those of the corresponding FA contained a unique fluorophore at an intermediate excitation/emission wavelength pair (EEWP) value. The fluorescence intensity measured by total luminescence (FI TL) of HA was lower than that of the corresponding FA. A comparison of all samples (i.e., the HA values compared to each other) revealed only slight differences in the EEWP position, but the FI TL values were significantly different. In this soil, anoxic conditions and reduced tillage (little plowing) seem to favor a higher degree of humification of the soil organic matter compared with aerated conditions and conventional tillage.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
Fast atom bombardment mass spectroscopy has been used to study a large number of cationic phosphine-containing transition-metal-gold clusters, which ranged in mass from 1000 to 4000. Many of these clusters have been previously characterized and were examined in order to test the usefulness of the FABMS technique. Results showed that FABMS is excellent in giving the correct molecular formula and when combined with NMR, IR, and microanalysis gave a reliable characterization for cationic clusters¹. Recently FABMS has become one of the techniques employed as routine in cluster characterization2,3 and also is an effective tool for the structure analysis of large biomolecules4. Some results in the present work reinforce the importance of these data in the characterization of clusters in the absence of crystals with quality for X-ray analysis.
Resumo:
The reaction of 1,2-dihydroxy-benzene (pyrocatechol) (C6H6O2) with iron oxide (Fe2O3) and sodium thiosulfate (Na2S2O3) in aqueous medium (pH 7) was investigated. Pyrocatechol suffers autoxidation and coordinates with Fe3+ in solution. The presence of S2O3(2-) in solution was fundamental to generate and stabilize the pyrocatechol oxidation products as o-semiquinones. This compound was isolated and its structure characterized using FT-IR, EPR and UV-Vis Spectroscopy as [CTA][Fe(SQ)2(Cat)]. A thermal mass loss mechanism was proposed based on Thermogravimetric Analysis (TG) to support the structural characterization.
Resumo:
This paper reports an analytical method for the determination of ambroxol in micellar medium by spot test-diffuse reflectance spectroscopy. The reflectance measurements were performed analyzing the colored compound (λ= 520 nm) produced from the reaction between ambroxol and p-dimethylaminocinnamaldehyde on the surface filter paper. The linear range was from 1.21 × 10"3 to 9.65 × 10"3 mol L-1 (500 - 4000 μg mL-1). The limit of detection and quantification were 3.50 x 10-4 mol L-1 (145 μg mL-1) and 1.16 x 10-3 mol L-1 (481 μg mL-1), respectively. Five commercial samples were analysed and the results obtained by the proposed method were in good agreement with those obtained by the literature method at 95% confidence level.
Resumo:
Pequi (Caryocar brasiliense Camb.), a typical fruit of Brazilian Cerrado, is well known in regional cookery and used in folk medicine to treat various illnesses. Mass spectrometry and chromatographic methods have identified the organic composition of pequi fruit pulp; however, NMR spectroscopy is used for the first time to characterize the nutritional components of organic and aqueous-ethanolic extracts. This spectroscopic technique determined the triacylglycerols in the pequi organic fraction, which is constituted mainly by oleate and palmitate esters, and detected the carbohydrate mixtures as the major components of aqueous and ethanolic fractions, respectively. In this study, presence of phenolic compounds was only evidenced in the ethanolic fraction.
Resumo:
We studied the adsorption of glyphosate (GPS) onto soil mineral particles, using FT-IR and Mössbauer spectroscopy. From IR measurements for samples collected under native vegetation of a forest reserve, bands at 1632 and 1407 cm-1 could be attributed to the interaction between the carboxylic group of GPS and structural Al3+ and Fe3+ on the surface of mineral particles; bands at 1075 and 1000 cm-1 were observed only for cultivated soil. Mössbauer spectra for these soils were definitely fitted using a broad central doublet in addition to the magnetic component. This multiple quadrupolar component may be attributed to all non-magnetic Fe3+ contributions, including that of the GPS/Fe3+ complex.
Resumo:
Brazil is one of the largest producers and consumers of charcoal in the world. About 50% of its charcoal comes from native forests, with a large part coming from unsustainable operations. The anatomic identification of charcoal is subjective; an instrumental technique would facilitate the monitoring of forests. This study aimed to verify the feasibility of using medium and near infrared reflectance spectroscopy to discriminate native (ipê) from plantation charcoals (eucalyptus). Principal Components Analysis, followed by Discriminant Factorial Analysis formed two different groups indicated by Mahalanobis distances of 40.6 and 80.3 for near and mid infrared, respectively. Validation of the model showed 100% efficacy.