91 resultados para Person detection and tracking
Resumo:
An enzyme-linked immunosorbent assay was standardized for the detection of cryptococcal antigen in serum and cerebrospinal fluid. The system was evaluated in clinical samples from patients infected by human immunodeficiency virus with and without previous cryptococcosis diagnosis. The evaluated system is highly sensitive and specific, and when it was compared with latex agglutination there were not significant differences. A standard curve with purified Cryptococcus neoformans antigen was settled down for the antigen quantification in positive samples.
Resumo:
This study sought the characterization of rotaviruses in a trial with a tetravalent rhesus-human rotavirus vaccine in Belém, Brazil in children who received three doses of vaccine or placebo in the 1st, 3rd and 5th months of life. Rotavirus electropherotypes, subgroups, G serotypes, G, [P] and [P],G genotypes were determined in 93.3%, 95.9%, 93.3%, 73.3%, 95.5% and 92.2% of isolates, respectively. Serotypes G1, G2 and G4 were detected in 58.9%, 30% and 4.4% of the cases, respectively. Rotavirus genotype G5 was detected for the first time in Northern region in 4.4% of the infections. Rotavirus genotypes P[8], P[4], P[6] and P[8+6] were detected in 54.5%, 26.7%, 12.2%, and 2.2% of the cases, respectively. The predominant genotypes were P[8],G1 and P[4],G2 with 53% and 26.6% of the infections, respectively. Unusual strains accounted for 20.5% including P[4],G1, P[6],G1, P[6],G4, P[6],G5, P[8],G2, P[8],G5. Mixed infections involving P[8+6],G2 and P[8+6],G1 were also noted. The neonatal P[6] strains associated with diarrhea were detected among children aged 9-24 months. To our knowledge, this study represents the first in Brazil to analyse, on molecular basis, rotavirus genotypes from children participating in a rotavirus vaccine trial. These results are of potential importance regarding future rotavirus vaccination strategies in Brazil.
Resumo:
Rotavirus is a major cause of infantile acute diarrhea, causing about 440,000 deaths per year, mainly in developing countries. The World Health Organization has been recommending the assessment of rotavirus burden and strain characterization as part of the strategies of immunization programs against this pathogen. In this context, a prospective study was made on a sample of 134 children with acute diarrhea and severe dehydration admitted to venous fluid therapy in two state hospitals in Rio de Janeiro, Brazil, from February to September 2004. Rotavirus where detected by polyacrylamide gel electrophoresis (PAGE) and by an enzyme-linked immunoassay to rotavirus and adenovirus (EIARA) in 48% of the children. Positive samples for group A rotavirus (n = 65) were analyzed by reverse transcription/heminested multiplex polymerase chain reaction to determine the frequency of G and [P] genotypes and, from these, 64 samples could be typed. The most frequent G genotype was G1 (58%) followed by G9 (40%). One mixed infection (G1/G9) was detected. The only [P] genotype identified was [8]. In order to estimate the rotavirus infection frequency in children who acquired diarrhea as hospital infection in those hospitals, we studied 24 patients, detecting the pathogen in 41% of them. This data suggest that genotype G9 is an important genotype in Rio de Janeiro, with implications to the future strategies of vaccination against rotavirus, reinforcing the need of continuous monitoring of circulating strains of the pathogen, in a surveillance context.
Resumo:
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
The objective of this work was to verify the existence of a lethal locus in a eucalyptus hybrid population, and to quantify the segregation distortion in the linkage group 3 of the Eucalyptus genome. A E. grandis x E. urophylla hybrid population, which segregates for rust resistance, was genotyped with 19 microsatellite markers belonging to linkage group 3 of the Eucalyptus genome. To quantify the segregation distortion, maximum likelihood (ML) models, specific to outbreeding populations, were used. These models consider the observed marker genotypes and the lethal locus viability as parameters. The ML solutions were obtained using the expectation‑maximization algorithm. A lethal locus in the linkage group 3 was verified and mapped, with high confidence, between the microssatellites EMBRA 189 e EMBRA 122. This lethal locus causes an intense gametic selection from the male side. Its map position is 25 cM from the locus which controls the rust resistance in this population.
Resumo:
Ilex paraguariensis (yerba-mate) is used as a beverage, and its extract requires adequate quality control methods in order to guarantee quality and safe use. Strategies to develop and optimize a chromatographic method to quantify theobromine, caffeine, and chlorogenic acid in I. paraguariensis extracts were evaluated by applying a quality by design (QbD) model and ultra high-performance liquid chromatography (UHPLC). The presence of these three phytochemical markers in the extracts was evaluated using UHPLC-MS and was confirmed by the chromatographic bands in the total ion current traces (m/z of 181.1 [M+H]+, 195.0 [M+H]+, and 353.0 [M−H]−, respectively). The developed method was then transferred to a high-performance liquid chromatography (HPLC) platform, and the three phytochemical markers were used as external standards in the validation of a method for analyses of these compounds in extracts using a diode array detector (DAD). The validated method was applied to quantify the chlorogenic acid, caffeine, and theobromine in the samples. HPLC-DAD chromatographic fingerprinting was also used in a multivariate approach to process the entire data and to separate the I. paraguariensis extracts into two groups. The developed method is very useful for qualifying and quantifying I. paraguariensis extracts.
Resumo:
The cubiu (Solanum sessiliflorum) fruit, originating in the Amazon basin, is commonly used in that region for food, medicine, and cosmetics. In an experimental culture of cubiu, in order to evaluate its adaptation to conditions in the Northern region of the state of Rio de Janeiro, it was observed plants with mosaic symptoms. A cubiu plant was collected and analyzed to identify the etiological agent. After mechanical passage through a local lesion host, a host range test was performed. The virus induced chlorotic local lesions in Chenopodium quinoa, necrotic local lesions in Gomphrena globosa, mosaic in S. sessiliflorum, leaf and stem necrosis in tomato (Lycopersicon esculentum) 'Rutgers', mosaic and leaf distortion in Datura stramonium and Physalis floridana, and necrotic local lesions followed by systemic necrosis and plant death in four Nicotiana species. Electron microscopic observations of ultra thin sections from infected cubiu leaves showed the presence of spheroidal, membrane-bound particles typical of tospovirus species. Analysis of the nucleocapsid protein from concentrated virus particles indicated the presence of a 28 kDa protein. RT-PCR was performed after total RNA extraction from infected IPA-6 tomato leaves. A fragment of approximately 0,8 kbp corresponding to the N gene was amplified, cloned and sequenced. The N protein from the cubiu isolate was 95% homologous to the Groundnut ringspot virus (GRSV) protein, and no more than 85% homologous to those from Zucchini lethal chlorosis virus (ZLCV) and Chrysanthemun stem necrosis virus (CSNV), Tomato spotted wilt virus (TSWV), and Tomato chlorotic spot virus (TCSV). This is the first report of the occurrence of GRSV (or any other plant virus) in cubiu.
Resumo:
An isolate of Grapevine virus B (GVB), obtained by indexing Vitis labrusca and V. vinifera grapevines on the indicator LN33, was transmitted mechanically to several Nicotiana species. The virus was partially purified from N. cavicola and the coat protein estimated at 23 kDa by SDS-PAGE. In negatively stained leaf extracts of experimentally inoculated N. cavicola and N. occidentalis, flexuous particles with cross banding were observed, predominantly measuring 750-770 x 12 nm, with a modal length of 760 nm. Decoration indicated a clear, positive reaction against AS-GVB. In DAS-ELISA, GVB was detected in N. cavicola and grapevine extracts, and Western blots showed homologous and cross reaction of GVB and GVA antisera with GVB coat protein. Using specific primers for GVB, a fragment of 594 bp, comprising the coat protein gene coding for 197 amino acids, was amplified by RT-PCR with viral RNA extracted from GVB-infected N. occidentalis. The nucleotide and the deduced amino acid sequences of the coat protein gene showed high identities with Italian and Japanese isolates of GVB.
Resumo:
Detection, symptoms and symptomless transmission of Drechslera avenae (teleomorph Pyrenophora avenae) from seed were investigated. The present study reported that the D. avenae is frequently found in oat (Avena sativa) seed in Argentina. The prevalence of the seed lot infected was 54%. The incidence of seeds infected by D. avenae in the various seed lots from different regions ranged from 0 to 52% (overall mean of 7%). Besides conidia on conidiophore and immature pseudothecia, D. avenae produced small, spherical to pear-shape picnidia containing tiny conidia, on the seed surface. The pathogen was efficiently transmitted at a rate of 55% from seed to coleoptile tips in symptomless seedlings and at 12.5% to plumules. The importance of the infected seed and its epidemiological role are discussed.
Resumo:
Stunting and stem necrosis were noticed in soybeans (Glycine max) grown in 2000/2001 in West Central Brazil the same condition was also observed in the following year in plantations as far as 2,000 km from the initial area. Based on transmission (mechanical, graft, insect vector), purification and serology, electron microscopy and molecular studies the causal agent was determined to be a whitefly-borne carlavirus which is possibly related to Cowpea mild mottle virus (CpMMV).
Resumo:
In order to develop a molecular method for detection and identification of Xanthomonas campestris pv. viticola (Xcv) the causal agent of grapevine bacterial canker, primers were designed based on the partial sequence of the hrpB gene. Primer pairs Xcv1F/Xcv3R and RST2/Xcv3R, which amplified 243- and 340-bp fragments, respectively, were tested for specificity and sensitivity in detecting DNA from Xcv. Amplification was positive with DNA from 44 Xcv strains and with DNA from four strains of X. campestris pv. mangiferaeindicae and five strains of X. axonopodis pv. passiflorae, with both primer pairs. However, the enzymatic digestion of PCR products could differentiate Xcv strains from the others. None of the primer pairs amplified DNA from grapevine, from 20 strains of nonpathogenic bacteria from grape leaves and 10 strains from six representative genera of plant pathogenic bacteria. Sensitivity of primers Xcv1F/Xcv3R and RST2/Xcv3R was 10 pg and 1 pg of purified Xcv DNA, respectively. Detection limit of primers RST2/Xcv3R was 10(4) CFU/ml, but this limit could be lowered to 10² CFU/ml with a second round of amplification using the internal primer Xcv1F. Presence of Xcv in tissues of grapevine petioles previously inoculated with Xcv could not be detected by PCR using macerated extract added directly in the reaction. However, amplification was positive with the introduction of an agar plating step prior to PCR. Xcv could be detected in 1 µl of the plate wash and from a cell suspension obtained from a single colony. Bacterium identity was confirmed by RFLP analysis of the RST2/Xcv3R amplification products digested with Hae III.
Resumo:
Sapovirus of the Caliciviridae family is an important agent of acute gastroenteritis in children and piglets. The Sapovirus genus is divided into seven genogroups (G), and strains from the GIII, GVI and GVII are associated with infections in swine. Despite the high prevalence in some countries, there are no studies related to the presence of porcine enteric sapovirus infections in piglets in Brazil. In the present study, 18 fecal specimens from piglets up to 28 days were examined to determine the presence of sapovirus genome by RT-PCR assay, using primers designed to amplify a 331 bp segment of the RNA polymerase gene. In 44.4% (8/18) of fecal samples, an amplified DNA fragment was obtained. One of these fragments was sequenced and submitted to molecular and phylogenetic analysis. This analysis revealed high similarity, with nucleotides (87%) and amino acids (97.8%), to the Cowden strain, the GIII prototype of porcine enteric calicivirus. This is the first description of sapovirus in Brazilian swine herds.
Resumo:
The dynamics of porcine circovirus type 2 (PCV2) shedding in semen of naturally infected boars was studied. Semen was collected serially each 15 or 20 days during 62 days from 5 boars from a herd and from 11 boars from an artificial insemination center. All boars were positive for PCV2 DNA by nested polymerase chain reaction of raw semen in at least two sampling dates, and most of them had detectable shedding in all sampling dates. Real-time quantitative PCR was performed in 23 samples. All samples showed low amounts of PCV2 DNA, ranging from 98 to 652 PCV2 copies/mL. No differences between the frequencies of PCV2 DNA shed in semen were found considering herds and age of boars. PCV2 shedding in the semen can occur continuously or intermittently up to 60 days in naturally infected boars at 12 to 42 months old in absence of PCV2 clinical signs. These results demonstrate sporadic and long-term shedding patterns of low amounts of PCV2 DNA in semen from naturally infected boars.
Resumo:
Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC). The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.