22 resultados para Particle and pore radii distributions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is carried out a review on structural parameters related to the evaluation of pore connectivity of nanostructures. The work describes parameters and methods of evaluation of geometric parameters. The concepts of connectivity are applied to silica gels and glasses obtained from sol-gel process. The study of pores connectivity was carried out using a combination of geometric modeling and experimental evaluation of specific surface area and pore volume. The permeability of the pore structure is evaluated and a permeability geometric factor, Pg, is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Montmorillonite clay from Brazil was pillared with aluminium polyhydroxications. The influence of aging of the pillaring solution and the concentration of the clay suspension on the properties of the prepared materials was studied. The materials were characterized by chemical analysis, XRD and pore analysis by N2 adsorption. The catalytic properties were evaluated in the cumene cracking reaction. Results showed that the pillarization process increases the basal spaces of natural clay from 9.7 to 18.5 Å and the surface area from 41 to 300 m²/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical aspects of Voltammetry of Immobilized Microparticles (VIM) were discussed. The immobilization of microparticles on electrode surface, the electrode cleaning processes and the electrode materials were analyzed. The three-phase electrode model and the possible reactions between the immobilized particle and the electrolytic solution were discussed. In addition, this work discusses some selected applications of VIM published in the last years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed convection on the flow past a heated length and past a porous cavity located in a horizontal wall bounding a saturated porous medium is numerically simulated. The cavity is heated from below. The steady-state regime is studied for several intensities of the buoyancy effects due to temperature variations. The influences of Péclet and Rayleigh numbers on the flow pattern and the temperature distributions are examined. Local and global Nusselt numbers are reported for the heated surface. The convective-diffusive fluxes at the volume boundaries are represented using the UNIFAES, Unified Finite Approach Exponential-type Scheme, with the Power-Law approximation to reduce the computing time. The conditions established by Rivas for the quadratic order of accuracy of the central differencing to be maintained in irregular grids are shown to be extensible to other quadratic schemes, including UNIFAES, so that accuracy estimates could be obtained.