50 resultados para PHAGOCYTOSIS
Resumo:
Studies on host-parasite interaction in Jorge Lobo's disease are scarce, with no report in the literature on the phagocytosis of Lacazia loboi by phagocytic mononuclear cells. Thus, the objective of the present study was to assess the phagocytic activity of blood monocytes in the presence of L. loboi in patients with the disease and in healthy subjects (controls) over 3 and 24 hours of incubation. Statistical analyses of the results showed no significant difference in percent phagocytosis of the fungus between patient and control monocytes. With respect to incubation time, however, there was a significant difference, in that percent phagocytosis was higher at 3 hours than at 24 hours (p <0.01). These results suggest that monocytes from patients with the mycosis are able to phagocyte the fungus, as also observed in control individuals.
Resumo:
We evaluated the in vitro phagocytic function and the production of microbicidal oxygen radicals by monocytes and neutrophils of 9 Chagas' heart disease subjects with heart failure and 9 without the syndrome in comparison with 11 healthy subjects, by assessing phagocytosis of Saccharomyces cerevisiae and NBT reduction by peripheral blood phagocytes. Phagocytic index of monocytes of chagasics without heart failure was significantly 6.7 and 10.6 times lower than those of controls and chagasics with the congestive syndrome, respectively, due to a lesser engagement in phagocytosis and to an inability of these cells to ingest particles. Neutrophils also show in chagasics without heart failure PI 11.2 and 19.8 times lower than that of controls and chagasics with heart failure, respectively. The percent of NBT reduction was normal and similar for the three groups. Balanced opposite effects of cardiovascular and immune disturbances may be acting in Chagas' disease subjects with heart failure paradoxically recovering the altered phagocytic function.
Resumo:
Abstract: INTRODUCTION: Leishmaniasis is a zoonotic disease caused by protozoa of the genus Leishmania . Cutaneous leishmaniasis is the most common form, with millions of new cases worldwide each year. Treatments are ineffective due to the toxicity of existing drugs and the resistance acquired by certain strains of the parasite. METHODS: We evaluated the activity of sodium nitroprusside in macrophages infected with Leishmania (Leishmania) amazonensis . Phagocytic and microbicidal activity were evaluated by phagocytosis assay and promastigote recovery, respectively, while cytokine production and nitrite levels were determined by ELISA and by the Griess method. Levels of iNOS and 3-nitrotyrosine were measured by immunocytochemistry. RESULTS: Sodium nitroprusside exhibited in vitro antileishmanial activity at both concentrations tested, reducing the number of amastigotes and recovered promastigotes in macrophages infected with L. amazonensis . At 1.5µg/mL, sodium nitroprusside stimulated levels of TNF-α and nitric oxide, but not IFN-γ. The compound also increased levels of 3-nitrotyrosine, but not expression of iNOS, suggesting that the drug acts as an exogenous source of nitric oxide. CONCLUSIONS: Sodium nitroprusside enhances microbicidal activity in Leishmania -infected macrophages by boosting nitric oxide and 3-nitrotyrosine.
Resumo:
OBJECTIVE: To analyze the immune response in peripheral blood of patients with infective endocarditis. METHODS: We studied 10 patients with infective endocarditis, age range from 20 to 50 years-old, males and females, and 20 healthy subjects in the same age range. The diagnosis of the disease was based on the clinical picture, echocardiogram, and hemoculture based upon samples drawn and tested before the treatment started. The were no history of atopy or malnutrition, no autoimmune disease, and they were not using any immunosuppressant or antibiotic medication. RESULTS: The patients with endocarditis had significantly higher T and B lymphocyte, CD4+ and CD8+ cell counts, IgM and IgG serum levels, and C4 component of the complement than the control group; no significant difference concerning serum IgA and neutrophil oxidative metabolism; a significant decrease in C3, chemotaxis, and monocyte phagocytosis;cryoglobulins were detected in 66.6% of patients and they were formed by IgG, IgM, IgA, C3, and C4. CONCLUSION: The patients with infective endocarditis were immunocompetent in most sectors of immune response and, at a certain moment, an autoimmune component may be present.
Resumo:
In an attempt to define the mouse-model for chronic Chagas' disease, a serological, histopathological and ultrastructural study as well as immunotyping of myocardium collagenic matrix were performed on Swiss mice, chronically infected with Trypanosoma cruzi strains: 21 SF and mambaí (Type II); PMN and Bolivia (Type III), spontaneously surviving after 154 to 468 days of infection. Haemagglutination and indirect immunofluorescence tests showed high titres of specific antibodies. The ultrastructural study disclosed the cellular constitution of the inflammatory infiltrate showing the predominance of monocytes, macrophages with intense phagocytic activity, fibroblasts, myofibroblasts and abundant collagen matrix suggesting the association of the inflammatory process with fibrogenesis in chronic chagasic cardiomyopathy. Artertolar and blood capillary alterations together with dissociation of cardiac cells from the capillary wall by edema and inflammation were related to ultrastructural lesions of myocardial cells. Rupture of parasitized cardiac myocells contribute to intensify the inflammatory process in focal areas. Collagen immunotyping showed the predominance of Types III and IV collagen. Collagen degradation and phagocytosis were present suggesting a reversibility of the fibrous process. The mouse model seems to be valuable in the study of the pathogenetic mechanisms in Chagas cardiomyopathy, providing that T. cruzi strains of low virulence and high pathogenecity are used.
Resumo:
Graft rejection is the major cause of failure of HLA mismatched bone marrow transplantation because of residual host immunity. we have proposed to use a monoclonal murine antibody specific for the LFA-1 molecule (25-3) to prevent graft failure in HLA mismatched bone marrow transplantation (BMT). The rationale for this approach is three fold: LFA-1 deficient patients (3/3) do not reject HLA mismatched BMT; anti LFA-1 blocka in vitro the induction of T cell responses and T/ non T cytotoxic functions; LFA-1 is not expressed by other cells than leucocytes. We have accordingly treated twenty two patients with inherited diseases and 8 with leikemia. The bone marrow was T cells depled by E rosetting of Campath antibody. The antibody was given at days -3, -1, +1, +3, +5 at dose of .1 mg/kg/d for the first 9 and then .2mg/kg/d from day -3 to +6. Engraftment occured in 23/30 patients as shown by at least HLA typing. Hematological recovery was rapid, GVH was limited. Side effects of antibody infusion included fever and possibly an increased incidence of early bacteral infection (sepsis, 1 death). Immunological reconstitution occured slowly leading in six cases to EBV-induced B cell poliferation (1 death and in two others to transient auto immune hemolytic anemia. There has been only one secondary graft rejection. Sisteen patients are alive 3 to 26 months post transplant with functional grafts. Although the number of patients treated is still low the absence of late rejection so far, gives hope for long term maintenance of the graft using anti LFA-1. Since the antibody is an IgG 1 unable to bind human complement, and since it is known to inhibit phagocytosis, there is a good suggestion that 25-3 act through functional blocking of host T and non T luymphocytes at both induction and effector levels.
Resumo:
Lectins, carbohydrate-binding proteins of non-immune origin, that agglutinate cells or precipitate polysaccharides and glycoconjugates, are well distributed in nature, mainly in the Plant Kingdom. The great majority of the plante lectins are present in seed cotyledons where they are found in the cytoplasm or int he protein bodies, although they have also been found in roots, stems and leaves. Due to their peculiar properties, the lectins are used as a tool both for analytical and preparative purposes in biochemistry, cellular biology, immunology and related areas. In agriculture and medicine the use of lectins greatly improved in the last few years. The lextins, with few exceptions, are glycoproteins, need divalent cations to display full activity and are, in general, oligomers with variable molecular weight. Although the studies on lectins have completed a century, their role in nature is yet ynknown . Several hypotheses on their physiological functions have been suggested. Thus, lectins could play important roles in defense against pathogens, plant-microorganism symbiosis, cell organization, embryo morphogenesis, phagocytosis, cell wall elongation, pollen recognition and as reserve proteins. A brief review on the general properties and roles of the lectins is given.
Resumo:
In the Saimiri monkey, an experimental host for human malaria, acquired protection against Plasmodium falciparum blood stages depends on the IgG antibody populations developed. In vivo protective anti-falciparum activity of IgG antibodies is correlated with the in vivo opsonizing activity promoting phagocytosis of parasited red bloood cells. In contrast, non protective antibodies inhibit this mechanism by competing at the target level. A similar phenomenon can be and human infection. Anti-cytoadherent and anti-rosette antibodies developed by Saimiri and humans prevent the development of physiopathological events like cerebral malaria which can also occur in this experimental host. Furthermore, transfer to protective human anti-falciparum IgG antibodies into infected Saimiri monkeys exerts an anti parasite activity as efficient as that observed when it is transfered into acute falciparum malaria patients, making the Saimiri an even more attractive host. Studies on the role of immunocompetent cells in the protective immune reponse are still in their infancy, however the existance of a restricted polymorphism of MHC II class molecules in the Saimiri confers additional theoretical and practical importance to this model.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.
Resumo:
In this study, we compared the level of TNF-alpha secretion induced in monocytic THP-1 cells after phagocytosis of Mycobacterium leprae, the causative agent of leprosy, and M. bovis BCG, an attenuated strain used as a vaccine against leprosy and tuberculosis. The presence of M. leprae and BCG was observed in more than 80% of the cells after 24 h of exposure. However, BCG but not M. leprae was able to induce TNF-alpha secretion in these cells. Moreover, THP-1 cells treated simultaneously with BCG and M. leprae secreted lower levels of TNF-alpha compared to cells incubated with BCG alone. M. leprae was able, however, to induce TNF-alpha secretion both in blood-derived monocytes as well as in THP-1 cells pretreated with phorbol myristate acetate. The inclusion of streptomycin in our cultures, together with the fact that the use of both gamma-irradiated M. leprae and heat-killed BCG gave similar results, indicate that the differences observed were not due to differences in viability but in intrinsic properties between M. leprae and BCG. These data suggest that the capacity of M. leprae to induce TNF-alpha is dependent on the stage of cell maturation and emphasize the potential of this model to explore differences in the effects triggered by vaccine strain versus pathogenic species of mycobacteria on the host cell physiology and metabolism.
Resumo:
Reactivity of snails against parasites exhibits a primitive focal reaction, with encapsulation, phagocytosis and destruction of parasite larvae by macrophage-like cells - the hemocytes. This reaction mimics granulomatous inflammation seen in higher animals. However, different from the latter, little is known about the participation of extra-cellular matrix in such snail defense reactions. Normal and Schistosoma mansoni-infected Biomphalaria glabrata of different strains were submitted to cytological, histological, ultrastructural and biochemical methods in order to investigate the behavior of extra-cellular tissues at the site of anti-parasite reactions. In spite of the presence of two cell-types in peripheral hemolymph, only one cell-type was present at the sites of tissue reactions. Although pre-existent collagen and elastic fibers and microfibrils sometimes appeared slightly compressed around focal reactions, no evidences of duplication, synthesis or deposition of connective-tissue extra-cellular components were observed within or around the zones of reactive cell accumulations. Thus, tissue reactions against S. mansoni in the snail B. glabrata appeared exclusively dependent on one specific population of hemocytes.
Resumo:
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10-14 to 10-7 M) and/or losartan, 10-16 to 10-6 M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cytotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10-13 M and 10-12 M AII concentrations. The addition of losartan (up to10-14 M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.
Resumo:
A polysaccharide-rich fraction (ATF) of medicinal mushroom Agaricus brasiliensis was evaluated on the candidacidal activity, H2O2 and nitric oxide (NO) production, and expression of mannose receptors by murine peritoneal macrophages. Mice received three intraperitoneal (i.p.) injections of ATF and after 48 h their peritoneal resident macrophages were assayed against Candida albicans yeast forms. The treatment increased fungicidal activity and it was associated with higher levels of H2O2, whereas NO production was not affected. We also found that the treatment enhances mannose receptor expression by peritoneal macrophages, which are involved in the attachment and phagocytosis of non-opsonized microorganisms. Treatment of animals with ATF was able to enhance the clearance of C. albicans during the first 6 h after the experimental i.p. infection. Our results suggest that this extract can increase host resistance against some infectious agents through the stimulation of microbicidal activity of macrophages.
Resumo:
Host cell apoptosis plays an important immune regulatory role in parasitic infections. Infection of mice with Trypanosoma cruzi, the causative agent of Chagas disease, induces lymphocyte apoptosis. In addition, phagocytosis of apoptotic cells stimulates the growth of T. cruzi inside host macrophages. In spite of progress made in this area, the importance of apoptosis in the pathogenesis of Chagas disease remains unclear. Here we review the evidence of apoptosis in mice and humans infected with T. cruzi. We also discuss the mechanisms by which apoptosis can influence underlying host responses and tissue damage during Chagas disease progression.