22 resultados para PERMEATION
Resumo:
Connexin46 (Cx46) forms functional hemichannels in the absence of contact by an apposed hemichannel and we have used these hemichannels to study gating and permeation at the single channel level with high time resolution. Using both cell-attached and -excised patch configurations, we find that single Cx46 hemichannels exhibit some properties expected of half of a gap junction channel, as well as novel properties. Cx46 hemichannels have a large unitary conductance (~300 pS) and a relatively large pore as inferred from permeability to TEA. Both monovalent cations and anions can permeate, but cations are substantially more permeable. The open channel conductance shows marked inward rectification in symmetric salts. We find that the conductance and permeability properties of Cx46 cell-cell channels can be explained by the series addition of two hemichannels. These data suggest that the pore structures of unapposed hemichannels and cell-cell channels are conserved. Also like cell-cell channels, unapposed Cx46 hemichannels are closed by elevated levels of H+ or Ca2+ ions on the cytoplasmic face. Closure occurs in excised patches indicating that the actions of these agents do not require a soluble cytoplasmic factor. Fast (<0.5 ms) application of H+ to either side of the open hemichannel causes an immediate small reduction in unitary conductance followed by complete closure with latencies that are dependent on H+ concentration and side of application; sensitivity is much greater to H+ on the cytoplasmic side. Closure by cytoplasmic H+ does not require that the hemichannel be open. Thus, H+ ions readily permeate Cx46 hemichannels, but at high enough concentration close them by acting at a cytoplasmic site(s) that causes a conformational change resulting in complete closure. Extracellular H+ may permeate to act on the cytoplasmic site or act on a lower affinity extracellular site. Thus, the unapposed hemichannel is a valuable tool in addressing fundamental questions concerning the operation of gap junction channels that are difficult to answer by existing methods. The ability of Cx46, and perhaps other connexins, to form functional unapposed hemichannels that are opened by moderate depolarization may represent an unexplored role of connexins as mediators of transport across the plasma membrane.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
ß-Glucans are soluble fibers with physiological functions, such as interference with absorption of sugars and reduction of serum lipid levels. The objective of the present study was to analyze the distribution of ß-glucans in different tissues of the African grass species Rhynchelytrum repens and also to evaluate their hypoglycemic activity. Leaf blades, sheaths, stems, and young leaves of R. repens were submitted to extraction with 4 M KOH. Analysis of the fractions revealed the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of ß-glucan in these fractions was confirmed by hydrolyzing the polymers with endo-ß-glucanase from Bacillus subtilis, followed by HPLC analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues were subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers was similar (250 kDa) to that of maize coleoptile ß-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes showed hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 h. This performance was better than that obtained with pure ß-glucan from barley, which decreased blood sugar levels for about 4 h. These results suggest that the activity of ß-glucans from R. repens is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.
Resumo:
Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.
Resumo:
Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm² s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.
Resumo:
Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances), liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.
Resumo:
CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis.