19 resultados para Ovulation.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The causes of luteal phase progesterone deficiency in polycystic ovary syndrome (PCOS) are not known. To determine the possible involvement of hyperinsulinemia in luteal phase progesterone deficiency in women with PCOS, we examined the relationship between progesterone, luteinizing hormone (LH) and insulin during the luteal phase and studied the effect of metformin on luteal progesterone levels in PCOS. Patients with PCOS (19 women aged 18-35 years) were treated with metformin (500 mg three times daily) for 4 weeks prior to the test cycle and throughout the study period, and submitted to ovulation induction with clomiphene citrate. Blood samples were collected from control (N = 5, same age range as PCOS women) and PCOS women during the late follicular (one sample) and luteal (3 samples) phases and LH, insulin and progesterone concentrations were determined. Results were analyzed by one-way analysis of variance (ANOVA), Duncan's test and Karl Pearson's coefficient of correlation (r). The endocrine study showed low progesterone level (4.9 ng/ml) during luteal phase in the PCOS women as compared with control (21.6 ng/ml). A significant negative correlation was observed between insulin and progesterone (r = -0.60; P < 0.01) and between progesterone and LH (r = -0.56; P < 0.05) concentrations, and a positive correlation (r = 0.83; P < 0.001) was observed between LH and insulin. The study further demonstrated a significant enhancement in luteal progesterone concentration (16.97 ng/ml) in PCOS women treated with metformin. The results suggest that hyperinsulinemia/insulin resistance may be responsible for low progesterone levels during the luteal phase in PCOS. The luteal progesterone level may be enhanced in PCOS by decreasing insulin secretion with metformin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to examine the association between follicular fluid (FF) steroid concentration and oocyte maturity and fertilization rates. Seventeen infertile patients were submitted to ovulation induction with urinary human follicle-stimulating hormone, human menopausal gonadotropin and human chorionic gonadotropin (hCG). A total of 107 follicles were aspirated after hCG administration, the oocytes were analyzed for maturity and 81 of them were incubated and inseminated in vitro. Progesterone, estradiol (E2), estrone, androstenedione, and testosterone were measured in the FF. E2 and testosterone levels were significantly higher in FF containing immature oocytes (median = 618.2 and 16 ng/ml, respectively) than in FF containing mature oocytes (median = 368 and 5.7 ng/ml, respectively; P < 0.05). Progesterone, androstenedione and estrone levels were not significantly different between mature and immature oocytes. The application of the receiver-operating characteristic curve statistical approach to determine the best cut-off point for the discrimination between mature and immature oocytes indicated levels of 505.8 ng/ml for E2 (81.0% sensitivity and 81.8% specificity) and of 10.4 ng/ml for testosterone (90.9% sensitivity and 82.4% specificity). Follicular diameter was associated negatively with E2 and testosterone levels in FF. There was a significant increase in progesterone/testosterone, progesterone/E2 and E2/testosterone ratios in FF containing mature oocytes, suggesting a reduction in conversion of C21 to C19, but not in aromatase activity. The overall fertility rate was 61% but there was no correlation between the steroid levels or their ratios and the fertilization rates. E2 and testosterone levels in FF may be used as a predictive parameter of oocyte maturity, but not for the in vitro fertilization rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative methods to the utilization of laboratory animal blood and its by-products are particularly attractive, especially regarding hamsters due to their small size and difficulties in obtaining serial blood samples. Steroid hormone metabolite quantification in feces, widely used in studies of free-ranging or intractable animals, is a non-invasive, non-stressor, economical, and animal saving technique which allows longitudinal studies by permitting frequent sampling of the same individual. The present study was undertaken to determine the suitability of this method for laboratory animals. Estradiol and progesterone metabolites were quantified by radioimmunoassay in feces of intact, sexually mature female Syrian hamsters during the estrous cycle (control) and in feces of superovulated females. Metabolites were extracted by fecal dilution in ethanol and quantified by solid phase radioimmunoassay. Median estrogen and progesterone concentrations were 9.703 and 180.74 ng/g feces in the control group, respectively. Peaks of estrogen (22.44 ± 4.54 ng/g feces) and progesterone (655.95 ± 129.93 ng/g feces) mean fecal concentrations respectively occurred 12 h before and immediately after ovulation, which is easily detected in this species by observation of a characteristic vaginal postovulatory discharge. Median estrogen and progesterone concentrations (28.159 and 586.57 ng/g feces, respectively) were significantly higher in superovulated animal feces (P < 0.0001). The present study demonstrated that it is possible to monitor ovarian activity in Syrian hamsters non-invasively by measuring fecal estradiol and progesterone metabolites. This technique appears to be a quite encouraging method for the development of new endocrinologic studies on laboratory animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was carried out to assess the possibility of measuring fecal steroid hormone metabolites as a noninvasive technique for monitoring reproductive function in the three-toed sloth, Bradypus variegatus. Levels of the estradiol (E2) and progesterone (P4) metabolites were measured by radioimmunoassay in fecal samples collected over 12 weeks from 4 captive female B. variegatus sloths. The validation of the radioimmunoassay for evaluation of fecal steroid metabolites was carried out by collecting 10 blood samples on the same day as defecation. There was a significant direct correlation between the plasma and fecal E2 and P4 levels (P < 0.05, Pearson's test), thereby validating this noninvasive technique for the study of the estrous cycle in these animals. Ovulation was detected in two sloths (SL03 and SL04) whose E2 levels reached 2237.43 and 6713.26 pg/g wet feces weight, respectively, for over four weeks, followed by an increase in P4 metabolites reaching 33.54 and 3242.68 ng/g wet feces weight, respectively. Interestingly, SL04, which presented higher levels of E2 and P4 metabolites, later gave birth to a healthy baby sloth. The results obtained indicate that this is a reliable technique for recording gonadal steroid secretion and thereby reproduction in sloths.