40 resultados para Orthogonal Activation Functions
Resumo:
Peritoneal macrophage activation as measured by H2O2 release and histopathology was compared between Swiss mice and Calomys callosus, a wild rodent, reservoir of Trypanosoma cruzi, during the course of infection with four strains of this parasite. In mice F and Y strain infections result in high parasitemia and mortality while with silvatic strains Costalimai and M226 parasitemia is sub-patent, with very low mortality. H2O2 release peaked at 33,6 and 59 nM/2 x 10(elevado a sexta potência) cells for strains Y and F, respectively, 48 and 50 nM/2 x 10 (elevado a sexta potência) for strains Costalimai and M226, at different days after infection. Histopathological findings of myositis, myocarditis, necrotizing artheritis and abscence of macrophage parasitism were foud for strains F and Costalimai. Y strain infection presented moderate myocarditis and myositis, with parasites multiplying within macrophages. In C. callosus all four strains resulted in patent parasitemia wich was eventually overcome, with scarce mortality. H2O2 release for strains Y or F was comparable to that of mice-peaks of 27 and 53 nM/2 x 10 (elevado a sexta potência) cells, with lower values for strains Costalimai and M226 - 16.5 and 4.6 nM/2 x 10(elevado a sexta potência)cells, respectively. Histopathological lesions with Y and F strain injected animals were comparable to those of mice at the onset of infections; they subsided completely at the later stages with Y strain and partially with F strain infected C. callosus. In Costalimai infected C. callosus practically no histopathological alterations were observed.
Resumo:
The dual function of eosinophils is clearly illustred in schistosomiasis. Well equipped in membrane receptors for immunoglobulins and complement, and due to the presence of granule basic proteins, eosinophils can become cytotoxic for parasite larvae and thus participate to protective immunity. However mediators can also exert their cytolytic effect on normal cells or tissues, inducing therefore pathology. Through ADCC mechanisms against schistosome larvae in vitro involving different antibody isotypes (IgG, IgE and IgA) and also in experiments performed in vivo, eosinophils have been clearly involved in protective immunity. Although no direct evidence of the protective role of eosinophils were brought in humans, the striking association of eosinophil-dependent cytotoxic antibody isotypes with resistance to reinfection (for instance IgE and IgA antibodies), whereas in vitro blocking antibody isotypes (IgG4, IgM) were detected in susceptible subjects, strongly, suggested the participation of eosinophils in antibody-dependent protective immune response. However eosinophils could also participate to granuloma formation around S. mansoni eggs and consequently to the pathological reactions induced by schistosomiasis.
Resumo:
This paper discusses current evidence for the relationship between polyclonal lymphocyte activation, specific immunossupression with decreased resistance, and autoimmune pathology, that are all often found associated with infections by a variety of virus, bacteria and parasites . The central question of class determination of immune effector activities is considered in the context of the cellular targets for nonspecific mitogenic activities associated with infection. A model is presented to integrate these findings: mitogenens produced by the microorganism or the infected cells are preferentially active on CD5 B cells, the resulting over-production of IL-10 will tend to bias all immune activities in to a Th-2mode of effector functions, with high titers of polyclonal antibodies and litle or no production of gamma IFN and other "inflamatory"lymphokines that often mediate resistance. In turn these conditions allow for parasite persistence and the corresponding long-term disregulation of self-directed immune reactivities, resulting in autoimmunity in the chronic phase. This model would predict that selective immunization with the mitogenic principles involved in desregulation, could stand better chances than strategies of vaccination based on immunopotentiation against othere, functionally neutral antigenic epitopes. It is argued, however, that the complexity of immune responses and their regulation together with our ignorance on the genetic controls of class-determination, offer poor prospects for a scientifically-based, rational development of vaccines in the near future. It is suggested that empirically-based and technologically developed vaccines might suceed, while basic scientific approaches are reinforced and given the time provide a better understanding of those process.
Resumo:
Mycobacterium tuberculosis preferentially resides in mononuclear phagocytes. The mechanisms by which mononuclear phagocytes keep M. tuberculosis in check or by which the microbe evades control to cause disease remain poorly understood. As an initial effort to delineate these mechanisms, we examined by immunostaining the phenotype of mononuclear phagocytes obtained from lungs of patients with active tuberculosis. From August 1994 to March 1995, consecutive patients who had an abnormal chest X-ray, no demostrable acid-fast bacilli in sputum specimens and required a diagnostic bronchoalveolar lavage (BAL) were enrolled. Of the 39 patients enrolled, 21 had microbiologically diagnosed tuberculosis. Thirteen of the 21 tuberculosis patients were either HIV seronegative (n = 12) or had no risk factor for HIV and constituted the tuberculosis group. For comparison, M. tuberculosis negative patients who had BAL samples taken during this time (n = 9) or normal healthy volunteers (n = 3) served as control group. Compared to the control group, the tuberculosis group had significantly higher proportion of cells expressing markers of young monocytes (UCHM1) and RFD7, a marker for phagocytic cells, and increased expression of HLA-DR, a marker of cell activation. In addition, tuberculosis group had significantly higher proportion of cells expressing dendritic cell marker (RFD1) and epithelioid cell marker (RFD9). These data suggest that despite recruitment of monocytes probably from the peripheral blood and local cell activation, host defense of the resident lung cells is insufficient to control M. tuberculosis.
Resumo:
T cell recognition of antigens displayed on the surface of antigen presenting cell results in rapid activation of protein tyrosine kinases and kinase C. This process leads to second messengers, such as inositol phosphates and diacylgycerol, and phosphorylation of multiple proteins. The role of different protein kinases in the activation of peripheral blood mononuclear cells (PBMC) from Schistosoma mansoni infected individuals was evaluated using genistein and H-7, specific inhibitors of protein tyrosine kinase and kinase C, respectively. Our results showed that proliferation in response to soluble egg antigen or adult worm antigen preparation of S. mansoni was reduced when PBMC were cultured in presence of protein kinase inhibitors. Using these inhibitors on in vitro granuloma reaction, we also observed a marked reduction of granuloma index. Taken together, our results suggest that S. mansoni antigen activation of PBMC involves protein kinases activity
Resumo:
Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.
Resumo:
Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.
Resumo:
While the eosinophil's effector functions clearly can contribute to the pathogenesis of allergic diseases, the evolutionary benefit to having eosinophils as a distinct class of leukocytes is not clear, especially if one must reconsider the nominally beneficial role of eosinophils in parasite host defense. Eosinophils are equipped to respond to lymphocytes and their cytokines (and not solely the eosinophil growth factor cytokines), but the functional consequences of such eosinophil responses need to be defined. Conversely, eosinophils, as antigen-presenting cells (APCs) or sources of lymphocyte-active cytokines, may stimulate and effect lymphocyte functioning. Eosinophils share with CD4+ lymphocytes expression of a number of receptors, including CD4 and IL-2R, and specific alpha4 integrins that may help in their common recruitment and activation. Further, elucidation of the interactions between lymphocytes and eosinophils will contribute to a broader understanding of the functioning of eosinophils in "normal" ongoing immune responses and in allergic disorders.
Resumo:
We have undertaken a comparative immunephenotypic study of spleen cells from hepatosplenic patients (HS) and uninfected individuals (NOR) using flow cytometry. Our data did not show any significant differences in the mean percentage of T-cells and B-cells between the two groups. Analysis of activated T-cells demonstrated that HS present an increased percentage of CD3+HLA-DR+ splenocytes in comparison to NOR. Analysis of T-cell subsets demonstrated a significant increase on the percentage of both activated CD4+ T-splenocytes and CD8+ cells in HS. We did not find any difference in the mean percentage of CD28+ T-cells. Analysis of the B-cell compartment did not show any difference on the percentage of B1-splenocytes. However, the spleen seems to be an important reservoir/source for B1 lymphocytes during hepatosplenic disease, since after splenectomy we found a decreased the percentage of circulating B1-lymphocytes. We observed an increase on the percentage of CD2+CD3- lymphocytes in the spleen of HS suggesting that the loss of CD3 by activated T-cells or the expansion of NK-cells might play a role in the development/maintenance of splenomegaly.
Resumo:
This paper reports the overall effects of three lectins, extracted from Canavalia brasiliensis, Dioclea violacea, and D. grandiflora, on BALB/c mice popliteal draining lymph nodes. These lectins have presented high stimulatory capacity on lymph node T cells. Additionally, they were able to induce apoptosis and inflammation (frequently associated with high endothelial venule necrosis). The data presented here suggest that the Diocleinae lectins studied can stimulate in vivo T cell activation and apoptosis, as well as present important side effects.