18 resultados para Optimized cooling
Resumo:
Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality.
Resumo:
The optimal dose of nitrogen (N) in potato crop depends on the production system. The objective of this study was to determine the optimal dose of N for the production of basic potato seed minitubers and evaluate the effect of N rates on physiological and nitrogen indices in the youngest fully developed leaf (fourth leaf) and in the oldest leaf of the plants at 60 days after planting. The experiment was conducted in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa. The treatments consisted of five N rates (0, 45, 90, 180 and 360 mg dm-3), with 10% of each dose applied at planting and the remainder through irrigation water, daily, for 30 days. The nitrogen rates positively influenced the physiological indices (length, width, leaf area, number of leaves, fresh mass and dry mass) and nitrogen (level and content of N and N-NO³ in the dry mass and SPAD) both in the fourth leaf and in the oldest leaf. Likewise, the N rates positively influenced the number and mass of harvested tubers. The largest number (5.44 tubers/plant) and the maximum mass of tubers (243.5 g/plant) were obtained with 360.0 and 332.9 mg N dm-3, respectively. Therefore, the mass and number of tubers were not optimized by the same N rate. The critical SPAD index was 38.8 in the fourth leaf, which was more sensitive to the effect of N rates than the oldest leaf.
Resumo:
ABSTRACT Maintaining cantaloupe melon at field temperature impairs conservation as it speeds up cell metabolism and transpiration, and, consequently, reduces shelf life. This study aimed to evaluate the conservation of Torreon hybrid cantaloupe using the hydrocooling treatment. Fruits were harvested at the commercial maturity stage (60 days after planting), in the morning, at the Nova California Farm, municipality of Mossoró-RN, in September 2007. One set of fruit was immersed in chilled water at 5 ºC for 5 min, at the packing house, while the remaining set was not hydro cooled. Then, both sets (treated and untreated with hydrocooling) were pre-cooled in air forced tunnels at 7 ºC, until the temperature in the pulp reached 10 ºC. Both fruit sets were stored for 0, 14, 21, 28 and 35 days under modified atmosphere at 3 ± 1 oC and 90 ± 5% RH. After each storage period, the fruits were incubated in an atmosphere-controlled chamber at 20 ± 2 oC and 80 ± 5% de RH, for seven days. The following characteristics were evaluated: external and internal appearance, mass loss, soluble solids, firmness and titrable acidity. The experiment was arranged in a completely randomized split-plot design with four replications of three fruits. The plots consisted of the hydrocooling conditions (with and without fruit soaking in chilled water), and the sub-plots consisted of the storage times (0, 14, 21, 28 and 35 days).The treatment with hydrocooling was efficient in keeping the firmness and soluble solids of the fruits and shortened the pre-cooling time in the cooling tunnel. However, hydrocooling did not increase fruit shelf-life.