19 resultados para Optimization. Markov Chain. Genetic Algorithm. Fuzzy Controller
Resumo:
The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.
Resumo:
We compared the cost-benefit of two algorithms, recently proposed by the Centers for Disease Control and Prevention, USA, with the conventional one, the most appropriate for the diagnosis of hepatitis C virus (HCV) infection in the Brazilian population. Serum samples were obtained from 517 ELISA-positive or -inconclusive blood donors who had returned to Fundação Pró-Sangue/Hemocentro de São Paulo to confirm previous results. Algorithm A was based on signal-to-cut-off (s/co) ratio of ELISA anti-HCV samples that show s/co ratio ³95% concordance with immunoblot (IB) positivity. For algorithm B, reflex nucleic acid amplification testing by PCR was required for ELISA-positive or -inconclusive samples and IB for PCR-negative samples. For algorithm C, all positive or inconclusive ELISA samples were submitted to IB. We observed a similar rate of positive results with the three algorithms: 287, 287, and 285 for A, B, and C, respectively, and 283 were concordant with one another. Indeterminate results from algorithms A and C were elucidated by PCR (expanded algorithm) which detected two more positive samples. The estimated cost of algorithms A and B was US$21,299.39 and US$32,397.40, respectively, which were 43.5 and 14.0% more economic than C (US$37,673.79). The cost can vary according to the technique used. We conclude that both algorithms A and B are suitable for diagnosing HCV infection in the Brazilian population. Furthermore, algorithm A is the more practical and economical one since it requires supplemental tests for only 54% of the samples. Algorithm B provides early information about the presence of viremia.