30 resultados para Opinion d’expert
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
A short, report on the chromosomes of three species of Brasilian Orthoptera is given in the present paper. Meroncidius intermedins Brunner, belonging to the Pseu-dophyllidae, differs from the species already studied in the Family in having 30 instead of 34 autosomes and a metacentric sex chromosome. "Of the autosomes, 4 showed to be metacentric. The author believes that the present species may be originated from one having 34 acrocentric autosomes by means of centric fusions. The origin of ths metacentricity of the X is not discussed. Oxyprora flavicornis Redtb.,belonging to the Copiphori-dae, has spermatogonia with 29 chromosomes. Of the autosomes, 4 seemed to be metacentric. The X has the form of a V of subae-qual arms. Neoconocephálus injuscatus (Scudd.), also belonging to the Copiphoridae, is provided with secondary spermatocytes of 13 -j- X and 13 chromosomes. The heterochromosome is metacentric. In the spermatogonia, whose chromosome number has not been counted, there are a lot of metacentric elements. In the opinion of the present writer species provided with 31, 33 and 35 chromosomes should exist in the Copiphoridae.
Resumo:
A short contribution to the Natural History of some Brazilian Frigillidae The following species of Brazilian Fringillidae are mentioned here, the first of which being more deeply studied: 1 - Oryzoborus angolensis angolensis (Linnaeus). 2 - Oryzoborus crassirostris maximiliani Cabanis. 3 - Cyanocompsa cyanea sterea Oberholser. 4 - Coryphospingus cucullatus rubescens (Swainson). About each one of the referred species, the Author gives native names, some datas and observations on its reproduction and behaviour under captivity, as well as on its natural alimentation. Some considerations about the geographical races of Oryzoborus angolensis: O. a. angolensis (Linnaeus) and 0. a. torridus (Scopoli) -are also made. Both the races occur in Brasil and, according to the Author's opinion, they are not satisfactorily caracterized.
Resumo:
In several cotton crops areas of the State of S. Paulo it was observed, during the years of 1948, 1949, and 1951, the appearance of a purple color of the leaves; the color appears in the opening of the bolls and was correlated with a decrease of production. The opinions concerning the cause of such abnormality were very different and sometimes contradictory; certain investigators attributed the disease to insect attack, others to bad climatic conditions whereas others to a potassium deficiency now called "fome de potássio" (potash hunger); our ideas on the subject is another one. We think that the disease is caused by lack of a suitable supply of magnesium. This opinion is largely based on the syntomatology found in the literature. To study the problem, several experiments were carried out, namely: 1. pot experiments using soil collected in areas where the disorder had appeared; 2. pot experiments controlling the water supply; 3. sand culture experiments omitting either potassium or magnesium; 4. leaf analysis of plant matrial collected troughout the Piracicaba County; 5. plot experiments with the varieties Texas, Express, and I.A. 817 Campinas. The first four experiments were discussed elsewhere. To study the point 5 an experiment was carried out, with the following treatments : 1 - NPKCaMg (no K added) - Mg supplied as MgSO4 (a soluble form); 2 -NPKCa (no Mg added); 3 -NPKCaMg (complete) - Mg supplied as MgSO4; 4 - NPKCaMg (complete) - Mg supplied as dolomitic limestone (a slightly soluble form) as a rate 2.5 higher than in the treatment 1 and 3. Organic matter as cottonseed meal was applied in the proportion of 500 kg per hectare. The experimental design was randomized blocks with 4 replications and the results can be summarized as follows: 1 the I.A 817 variety was the most strongly affected by the physiological disorder, with severe decrease in yield; 2. the disease occurred more frequently in the minus magnesium treatment; 3. dolomitic limestone is so effective as magnesium sulfate in the control of the disease as well in the raising of the yield; 4. in the minus K treatment it was observed a marked occurrence of the typical symptoms of potassium deficiency (cotton rust); 5. magnesium was actually, in the experimental conditions the responsible for the purple color (vermelhão) of the cotton leaves.
Resumo:
In this paper it is studied the action of vinasse as compared to mineral fertilizers. Beans, corn, cotton and sesame were cultivated in randomized blocks receiving the following treatments: A = mineral fertilizers (N, P, K); V = vinasse at the rate of 1,000,000 liters per Ha; AV = mineral fertilizers + vinasse; T = control. Statistical analysis of the experiments has consistently revealed the superiority of vinasse either combined or not with the mineral fertilizers over the remaining treatments. There was no significant difference between V and AV which shows the surprizing role of vinasse when applied to light soils such as those employed in the present experiments. By employing 1,000,000 liters of vinasse to the hectare the following amounts of nutrientes were applied to the crops in this experiment: 470 Kg of nitrogen 50 Kg of P2O5 and 3,100 Kg of K2O corresponds to 3,133 Kg of Chilean nitrate/ha 250 Kg of superphosphate and 5,160 Kg of muriate of potash Hence one cannot say that the action of vinasse is of a purely physical nature. In our opinion its outstanding action is due to: 1st raise in the pH value of the soil; 2nd addition of a tremendous amount of plant nutrients; 3rd supplying organic matter in a very finely divided state with all its benefical effects in soil structure, water holding capacity, adsorption of nutrients to prevent leaching, etc. A rotation experiment is now being carried out to study the residual effect of vinasse.
Resumo:
1.-Since the parietal endocarditis represents a chapter generally neglected, owing to the relative lack of cases, and somewhat confused because there various terms have been applied to a very same morbid condition, it justifies the work which previously we tried to accomplish, of nosographic classification. Taking into account the functional disturbances and the anatomical changes, all cases of parietal endocarditis referred to in the litterature were distributed by the following groups: A-Group-Valvulo-parietal endocarditis. 1st . type-Valvulo-parietal endocarditis per continuum. 2nd. type-Metastatic valvulo-parietal endocarditis. 3rd. type-Valvulo-parietal endocarditis of the mitral stenosis. B-Group-Genuine parietal endocarditis. a) with primary lesions in the myocardium. b) with primary lesions in the endocardium. 4th type-Fibrous chronic parietal endocarditis (B A Ü M L E R), « endocarditis parietalis simplex». 5th type-Septic acute parietal endocarditis (LESCHKE), «endocarditis parietalis septica». 6th type-Subacute parietal endocarditis (MAGARINOS TORRES), «endocarditis muralis lenta». 2.-Studying a group of 14 cases of fibrous endomyocarditis with formation of thrombi, and carrying together pathological and bacteriological examinations it has been found that some of such cases represent an infectious parietal endocarditis, sometimes post-puerperal, of subacute or slow course, the endocardic vegetations being contamined by pathogenic microörganisms of which the most frequent is the Diplococcus pneumoniae, in most cases of attenuated virulence. Along with the infectious parietal endocarditis, there occur arterial and venous thromboses (abdominal aorta, common illiac and femural arteries and external jugular veins). The case 5,120 is a typical one of this condition which we name subacute parietal endocarditis (endocarditis parietalis s. muralis lenta). 3.-The endocarditis muralis lenta encloses an affection reputed to be of rare occurrence, the «myocardite subaigüe primitive», of which JOSSERAND and GALLAVARDIN published in 1901 the first cases, and ROQUE and LEVY, another, in 1914. The «myocardite subaigüe primitive» was, wrongly, in our opinion, included by WALZER in the syndrome of myocardia of LAUBRY and WALZER, considering that, in the refered cases of JOSSERAND and GALLAVARDIN and in that of ROQUE and LEVY, there are described rather considerable inflammatory changes in the myocardium and endocardium. The designation «myocardia» was however especially created by LAUBRY and WALZER for the cases of heart failure in which the most careful aetiologic inquiries and the most minucious clinical examination were unable to explain, and in which, yet, the post-mortem examination did not reveal any anatomical change at all, it being forcible to admit, then, a primary functional change of the cardiac muscle fibre. This special cardiac condition is thoroughly exemplified in the observation that WALZER reproduces on pages 1 to 7 of his book. 4.-The clinical picture of the subacute parietal endocarditis is that of heart failure with oedemas, effusion in the serous cavities and passive chronic congestion of the lungs, liver, kideys and spleen associated, to that of an infectious disease of subacute course. The fever is rather transient oscillating around 99.5 F., being intersected with apyretic periods of irregular duration; it is not dependent on any evident extracardiac septic infection. In other cases the fever is slight, particularly in the final stage of the disease, when the heart failure is well established. The rule is to observe then, hypothermy. The cardiac-vascular signs consist of enlargement of the cardiac dullness, smoothing of the cardiac sounds, absence of organic murmurs and accentuated and persistent tachycardia up to a certain point independent of fever. The galloprhythm is present, in most cases. The signs of the pulmonary infarct are rather expressed by the aspect of the sputum, which is foamy and blood-streaked than by the classic signs. Cerebral embolism was a terminal accident on various cases. Yet, in some of them, along with the signs of septicemia and of cardiac insufficiency, occurred vascular, arterial (abdominal aorta, common illiac and femurals arteries) and venous (extern jugular veins) thromboses. 5. The autopsy revealed an inflammatory process located on the parietal endocardium, accompanied by abundant formation of ancient and recent thrombi, being the apex of the left ventricle, the junction of the anterior wall of the same ventricle, with the interventricular septum, and the right auricular appendage, the usual seats of the inflammatory changes. The region of the left branch of HIS bundle is spared. The other changes found consist of fibrosis of the myocardium (healed infarcts and circumscribed interstitial myocarditis), of recent visceral infarcts chiefly in lungs, spleen and brain, of recent or old infarcts in the kidneys (embolic nephrocirrhosis) and in the spleen, and of vascular thromboses (abdominal aorta, common illiacs and femurals arteries and external jugular veins), aside from hydrothorax, hydroperitoneum, cutaneous oedema, chronic passive congestion of the liver, lungs, spleen and kidneys and slight ictericia. 6. In the subacute parietal endocarditis the primary lesions sometimes locate themselves at the myocardium, depending on the ischemic necrosis associated to the arteriosclerosis of the coronariae arteries, or on an specific myocarditis. Other times, the absence of these conditions is suggestive of a primary attack to the parietal endocardium which is then the primary seat of the lesions. It matters little whatever may be the initial pathogenic mechanism; once injured the parietal endocardium and there being settled the infectious injury, the endocarditis develops with peculiar clinical and anatomical characters of remarkable uniformity, constituting an anatomo-clinical syndrome. 7.-The histologic sections show that recent lesions
Resumo:
Ixodidae of the Argentine Republic are studied by the Author based on 71 lots of material, sent by Prof. Salvador Mazza, comprising 13 different species, two of which are found in Argentine territory: Haemaphysalis kochi Arag. and Amblyomma parvitarsum Nn. The author admits the existence in Argentina of 23 species of Ixodidae, but such number may still increase along with the development of the studies on the subject. In this paper, the Ornithodoros classified by Barbará and Dios as Ornithodoros turicata, is sunk by the Author in synonymy with O. rostratus Arag. not merely on the strength of the material at his disposal, but also by the plates published by the Argentine authors. The following species are also placed in synonymy: Amblyomma altiplanum Dios, 1917 (= Amblyomma parvitarsum Nn., 1899), Amblyomma concolor, Nn., 1899 (=Amblyomma auriculare Conil, 1877) Amblyomma furcula Donitz, 1907 (= Amblyomma neumani Ribaga, 1902). In the Author's opinion Amblyomma striatum C. L. Koch, 1844 and Amblyomma fossum Nn. are distinct species, so that the same Amblyomma ovale for both should no longer subsist as L. C. Robinson proposes. The Author, moreover, shows his doubts upon the existence in Argentine of Aponomma laeve, Nn., 1899 and Dermacentor triangulus Nn., 1899, as they have not been seen any more and in South-America no representatives of the genera Aponomma and Dermacentor are known.
Resumo:
The author who was appointed entomologist of the Biological Station in Perus, São Paulo, describes in this paper, the kind of work he has been doing there. He begins with a description of the organization of the Station and of the routine work as it was daily carried on there, by himself and his staff, during nearly 6 months. During the day as well as during the night, captures of jungle were made in the forest and the same was done by night, in the Station House chiefly when the athmosphere was damp, just before, during, or after a rain. There was also an intensive search for foci of mosquitoes' larves in the bromelias, in holes, in trees and in the soil. The larves found in these breeding places were brought to a larvarium established in the forest in a place close to the station where they were bred in holes of bambus which were very suitable for them. During daytime, only new hatched mosquitoes have been captured, but during the night it has been possible to catch, inside the Station house, many female mosquitoes, with developped eggs, so confirming Aragão's opinion, that mosquitoes biting during the day are always, newly hatched ones. Some species of Sabetini were captured only inside the Biological Station House, during the night. The habits of the following species were subjected to more accurate investigations. Aedes scapularis, Aedes leucocelaenus, Lutzia braziliae, Culex (Carolia) iridescens, Orthopodomyia albicosta, Goeldia palidiventer, Joblotia compressum, Wyeomyia longirostris, Sabetoides intermedius, Limatus durhami. The conditions of the temperature of the Station, did not permit the authour to obtain breedings of Aedes aegypti in the larvarium of the Station, even during he summer months. A great diminuitions of species of the jungle mosquitoes was observed, from January till June, that is, when temperature gets lower and lower. The author has made the interesting observation that some species of mosquitoes (Joblotia and Limatus), must take a meal of flowers or bee honey before they suck blood. A list of the mosquitoes captured during the months of February to June, in the Station is given.
Resumo:
The A. studies critically the literature on D. caudispina (Molin, 1858) and concludes that it is a good species, differing from D. gracilis (Rudolphi, 1809), principally, by the longer spicule. This conclusion is confirmed by the study of material collected by d'Almeida in the abdominal cavity of one specimen of Ateles paniscus (L.), of the State of Pará, Brazil. In contradiction to Stiles & Hassall's opinion the A. indicates this monkey for host-type of the Molin's species. A synonymic list and a redescription of D. caudispina are given.
Resumo:
The A. A. made bacteriological invesigations in 145 cases of autopsy. These investigations were carried out on the blood and spleen. The cultures were positive in 67 cases and in 21 of these there was body contamination. In the other cases the isolated bacteria were the proved or probable cause of the disease. For the Staphylococcus alone (isolated in 9 cases) we cannot give a definite opinion. We think that presence of bacteria in the blood and in the spleem implies bacteriemia at the moment of death, according to the observations of Hunt and co-workers. In our cases such presence was related to that of anatomical lesions of bacterial origin. When the bacteria were present only in the spleen we think that there had been bacteriemia, not present at the moment of the death. We only observed the contamination by contiguity when the bacteria were present in the blood of the heart. The isolated bacteria were always related to the presence of anatomical lesions. In only 4 cases was this not observed. We were impressed by the great number of negative results even in bodies kept for more than 24 hours. In only 21 cases was body contamination present. In rare cases the bacteria were isolated from the lesions and not from the blood and spleen. We think that apart from the interest of invesigaion, the bacteriological examinations in body material will be able to clear up the diagnosis of many obscure and unnoticed infections. In almost all our cases we obtained that result.
Resumo:
The author describes the forms found in material obtained from a human lesion localized in the mouth. The patient was a farmer and the diagnosis unknown. The author found yeast forms, some germinating, resembling those found in the mycosis of LUTZ. It was Sporotricosis and only once, in 96 cases, has the author found these fungous forms in the suspected material. The cultures in Sabouraud glucose and in many other media were positive for Sporotrichum, resembling that described by BENEDEK in 1926 (variety?) principally by the reddish colour of some cultures. The author thinks there is, perhaps, a mutation influenced by the surroundings and the light in certain cultures and that the dark pigment is the dominant one. He considers that the pigment will not do for the differentiation of species and that it is, really, Sporotrichum Schencki-Beurmanni. The author calls attention to the question of diagnosis and studies separately, each of the elements in which his opinion is based, finding that only a macro and microscopic study of the cultures decides the question.
Resumo:
We had the opportunity to study 6 cases of the congenital form of toxoplasmosis, found in a series of 1200 necropsies of fetuses and newborn babies, realized at 3 different hospitals in Rio de Janeiro, Brazil. Among the 6 cases, 4 were premature babies liveborn at the 6th-8th gestational month and 2 were stillborn (1 premature and 1 at term). In all those cases, the diagnosis was based in the detection of the parasite in tissues and in one case it was even isolated the Toxoplasma from the necrotic material found in the cranial cavity. This strain of Toxoplasma, pathogenic to pigeons, to guinea pigs and to mice, is preserved by successive transfers in mice. Some facts observed in those cases present an interest not only strictly anatomic but also have certain value for the better acknowlegment of the disease. First, we want to call the attention to the presence of a sudden high fever, during or just before pregnancy in the 4 cases in which the maternal anamnesis was perfectly studied; this fever that was preceded by a normal beginning of pregnancy, had relatively rapid remission, but in 2 cases was immediately followed by uterine bleeding and premature delivery, although the puerperium had been apparently normal. It is known that are normal the subsequent children of the mothers that delivered a baby with toxoplasmosis and that several women have normal babies before the toxoplasmotic one. We believe that the fever observed in our cases could be indicative of the beginning of maternal infection and those are the reasons why we emphasize the need of careful anamnesis, specially in the cases actually diagnosed as inapparent infection. Another fact to notice is that in 5 of our cases the event premature delivery happened always between the 6th and the 8th months of pregnancy, and the only term fetus was delivered in advanced stage of maceration. The above mentioned facts could agree with the opinion of FRENKEL (1949), when he declared that "primary infection of the pregnant mother appears more likely to be the commoner mode of fetal toxoplasmic infection", but they would disagree with WEINMAN (1952) who believes that the transmission of Toxoplasma to the fetus is more frequent through a pregnant woman with chronic disease and who says "that infection contracted during pregnancy may and probably does happen from time to time"...Still in connection with the transmission of toxoplasmosis, we want to note the verification of inflammatory lesions in the placental villi and in the umbilical cord in 3 of the 4 cases in which such organs were examined at the microscope. In the case n. 1, we found several pseudocysts of Toxoplasma in the placenta, and the fibroblasts of Wharton's jelly were particularly rich in isolated forms and in colonies of Toxoplasma; the easy multiplication of the parasite in that tissue calls the attention and even suggests its utilisation for Toxoplasma's cultivation. The confirmation of Toxoplasma in human placenta was made only recently by CRISTEN et al. (1951) and by NEGHME et al. (1952), in Chile; it is not frequent in the literature, what gives some value to our present verification. Another observation was that provided by the case n. 6. This baby, a premature one of the 6th month, was 14 days old and-died with signs of respiratory disease, the causa mortis have been pneumonia. At the necropsy, we found no gross change that suggested toxoplasmosis, except the presence of some small necrotic focuses in the cerebral nervous substance around the ventricles. As a matter of fact, there was no enlargement of spleen or liver and neither leptomeningitis nor hydrocephalus. Such focuses were attributed to possible anoxia and in fact they are extremely similar to anoxial softenings, even when they are examined at the microscope; its structure composed of a central necrotic zone, surrounded by proliferated neuroglia and by a variable deposit of calcium salts, closely simulated the anoxial softenings, when the microscopical examination is based in the common histological preparations (hematoxilin-eosin, etc.). But when we examine preparations by the Giemsa or by the periodic acid-Schiff methods, we will note the presence of Toxoplasma, with its typical aspect or a little changed by degeneration. When we describe this observation, we wish to evidence the need of the search of Toxoplasma and closed parasites, in the cases of supposed pure anoxial softenings of nervous substance, in children. The frequency with which the congenital toxoplasmosis was anatomically verified should be emphasized, although the disease had not been clinically suspected, and it should be borne in mind that the second case of toxoplasmosis reported in the world was observed in Brazil by MAGARINOS TORRES; this case was the first to be described of the generalized congenital form of the infection, i. e. with myocardial lesions and parasites in skeletal muscles and skin.
Resumo:
In this paper the author points out to a old question of about 200 years ago in wich two kinds of opinions were discussed. BANCROFT and FONTANA in one hand atributes for the Indian arrow poison (curare) the propriety of uncoagulate the blood, and C. BEBNAHDJ, B. RODRIGUES and others made an contradictory opinion upon this subject. In our experiments, we utilized 4 curares samples from indians who lives near the Brazilian border at Colombia, the famous Ticunas poison, and the alkaloid d-Tubocurarine. These poisons were added in form of emulsion in saline to the blood and blood plasma in order to perform two kinds of experiments. In one serie of experiments we observed the effect of curare on human blood coagulation time according to LEE-WHITE technic puting 0.5 ml of the various poisons emulsions previously into the tube. By this method, we have found that the emulsion containing 0.1 g of the poison in 10 ml saline was the most effective (Table II), therefore we used this curare emulsion concentration in the other serie of experiments, in which we tested the action of these venoms on the human blood plasma prothrombins time, (Quick Technic) adding 0.1 ml of the saline poison emulsion to each 0.1 ml of human blood plasma. Results from these experiments can be seen on Table II. These experiments we have tried on one sample of human blood plasma plus the differents curares samples; and in another opportunity four samples of human blood plasma were tried with the curare from Ticunas indians (the most effective in this respect). Results from these experiments may be seen on Table III. All the poison tried in our experiments was previously tested on toads legs (B. crucifer) to verify his curares action. All times obtained with the experiments above, show highly significant results (P<001) when compared with the blood and blood plasma mixed with in the same volume of saline. Our results, point out that BANCROFT and FONTANA views upon the effect of curare on blood clothing time were correct. Curares enhance the blood clothing time "in vitro". But, in other hand, the work in that matter by NESI (6), and TISTHOUND (7) showing that d-Tubocurarine had no significant effect on blood clothing time of man and dogs "in vivo", made possible to conclude that the observations of C. BERNARD, B. RODRIGUES and others were also true. These discordance of opinions, we believe, may result as BANCROFT and FONTANA researches, were wade "in vitro" whereas C. Bernard, B. Rodrigues and others performed their experiments "in vivo".
Resumo:
Prof. Dr. Hugo de Souza Lopes is one of the authors of the phylogenetic classification of Sarcophagidae, especially Sarcophaginae. In this paper I present the taxonomic key of the tribes of Sarcophaginae according to his opinion; a list of the 48 genera and subgenera and the 356 species described by Prof. Lopes; and a review of subtribal construction of tribe Sarcophagini with a key of the subtribes. One new subtribe Boettcheriiscina Verves, subtr. nov. and two new monotypic genera (Mufindia Verves, gen. nov., and Sabiella Verves, gen. nov.) are described. The role of Prof. Lopes in the knowledge of taxonomy and ecology of American, Oriental, Australian and Oceanic Sarcophagidae is illumined.
Resumo:
Most opinion favors the origin of the malaria parasites from a coccidial ancestor. It is assumed that whatever the process through which the coccidia differentiated into a Plasmodium this phenomenon very probably occured millions of year ago, and during that differentiation process the original coccidia vanished. Therefore it has never repeated. At the light of some experiments the existence, at the present time, of a coccidial cycle of development in the malaria parasites, is proposed. The conection routes and mechanisms through which the malaria parasite changes to a coccidial life, and the routes in reverse are exposed. Transmission of the malaria-coccidial forms is suggested.