82 resultados para ORAL EPITHELIAL-CELLS
Resumo:
Phospholipase and proteinase production and the ability of adhesion to buccal epithelial cells (BEC) of 112 Candida isolates originated from oral cavity of HIV infected patients and from blood and catheter of intensive care unit patients were investigated. The proteinase production was detected by inoculation into bovine serum albumin (BSA) agar and the phospholipase activity was performed using egg yolk emulsion. A yeast suspension of each test strain was incubated with buccal epithelial cells and the number of adherence yeast to epithelial cells was counted. A percentage of 88.1% and 55.9% of Candida albicans and 69.8% and 37.7% of non-albicans Candida isolates produced proteinase and phospholipase, respectively. Non-albicans Candida isolated from catheter were more proteolytic than C. albicans isolates. Blood isolates were more proteolytic than catheter and oral cavity isolates while oral cavity isolates produced more phospholipase than those from blood and catheter. C. albicans isolates from oral cavity and from catheter were more adherent to BEC than non-albicans Candida isolates, but the adhesion was not different among the three sources analyzed. The results indicated differences in the production of phospholipase and proteinase and in the ability of adhesion to BEC among Candida spp. isolates from different sources. This study suggests that the pathogenicity of Candida can be correlated with the infected site.
Resumo:
Frequent reports on outbreaks of acute Chagas' disease by ingestion of food contaminated with parasites from triatomine insects illustrate the importance of this mode of transmission. Studies on oral Trypanosoma cruzi infection in mice have indicated that metacyclic trypomastigotes invade the gastric mucosal epithelium. A key molecule in this process is gp82, a stage-specific surface glycoprotein that binds to both gastric mucin and to target epithelial cells. By triggering Ca2+ signalling, gp82 promotes parasite internalisation. Gp82 is relatively resistant to peptic digestion at acidic pH, thus preserving the properties critical for oral infection. The infection process is also influenced by gp90, a metacyclic stage-specific molecule that negatively regulates the invasion process. T. cruzi strains expressing high gp90 levels invade cells poorly in vitro. However, their infectivity by oral route varies considerably due to varying susceptibilities of different gp90 isoforms to peptic digestion. Parasites expressing pepsin-susceptible gp90 become highly invasive against target cells upon contact with gastric juice. Such is the case of a T. cruzi isolate from an acute case of orally acquired Chagas' disease; the gp90 from this strain is extensively degraded upon short period of parasite permanence in the gastric milieu. If such an exacerbation of infectivity occurs in humans, it may be responsible for the severity of Chagas' disease reported in outbreaks of oral infection.
Resumo:
Toxoplasmosis is frequently acquired through the oral route by the ingestion of cysts or oocysts of Toxoplasma gondii. Once ingested, the parasites penetrate the intestinal epithelial cells and rapidly disseminate to all organs in the host. During T. gondii infection, the intestinal microbiota plays an important role in stimulating a protective immune response against the parasite. In this sense the use of probiotics is worthy of note since they are live microorganisms that have beneficial effects on the host through stimulation of the immune response that can be important in the control of T. gondii proliferation and dissemination in the host. In the present study, the action of the probiotic Bifidobacterium animalis subsp. lactis was investigated in C57BL/6 mice infected with oocysts of ME49 strain of T. gondii. The probiotic had an immunomodulatory action, inducing CD19 lymphocyte proliferation and consequently increasing anti-T. gondii antibody level.Bifidobacterium animalis subsp. lactisprovided protection in supplemented mice, compared to the control group. In addition, supplemented animals had milder inflammatory process in the small intestine, indicating that the probiotic protects the intestinal mucosa during infection with T. gondii. It was concluded that the probioticB. animalis subsp. lactis induces humoral immune response capable of providing protection against T. gondii infection.
Resumo:
Intrathymic T lymphocyte differentiation proceeds from complex interactions between prothymocytes of bone marrow origin and cells of the thymic stroma, epithelial cells and "acessory" cells (macrophages and/or interdigitating cells). The present paper describes the role of the accessoty cell compartment in this intrathymic process. Acessory cells produce factors which are involved in thymocyte proliferation (interleukin 1, prostaglandins, deoxynucleosides). Cell-cell interaction between "accessory" cells and thymocytes is required for the regulation of interleukin production. Prothymocytes, the precursors of all thymocyte subsets, need the accessory cell compartment for their IL2 dependent proliferation and their differentiation. Accessory cells of the thymic stroma may be involved in the intrathymic selection process at the prothymocyte level.
Resumo:
Protease secretion by Giardia duodenalis trophozoites upon interaction with epithelial cells and its association with the parasite adhesion was studied in co-cultures of parasites with IEC6 epithelial cell monolayers in the presence or absence of protease inhibitors. Proteolytic activity in supernatants from trophozoites was enhanced when they were co-cultured with IEC6 cells. This activity was strongly inhibited by pre-incubation of live trophozoites with E-64 and TPCK and a concomitant inhibition of parasite adhesion to IEC6 cells was observed. These data suggest that trophozoites secrete cysteine-type proteases that play a role in the adhesion of G. duodenalis to epithelial cells.
Resumo:
Paracoccidioidomycosis presents a variety of clinical manifestations and Paracoccidioides brasiliensis can reach many tissues, most importantly the lungs. The ability of the pathogen to interact with host surface structures is essential to its virulence. The interaction between P. brasiliensis and epithelial cells has been studied, with particular emphasis on the induction of apoptosis. To investigate the expression of different apoptosis-inducing pathways in human A549 cells, we infected these cells with P. brasiliensis Pb18SP (subcultured) and 18R (recently isolated from cell culture and showing a high adhesion pattern) samples in vitro. The expressions of Bcl-2, Bak and caspase 3 were analysed by flow cytometry and DNA fragmentation using the TUNEL technique. Apoptosis of human A549 cells was induced by P. brasiliensis in a sample and time-dependent manner. Using an in vitro model, our data demonstrates that caspase 3, Bak, Bcl-2 and DNA fragmentation mediate P. brasiliensis-induced apoptosis in A549 cells. The overall mechanism is a complex process, which may involve several signal transduction pathways. These findings could partially explain the efficient behaviour of this fungus in promoting tissue infection and/or blood dissemination.
Resumo:
Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.
Resumo:
The objective of this review on the investigation of "cara inchada" in cattle (CI), pursued over the last 30 years, was to elucidate the pathogenicity of the disease and come to proper conclusions on its etiology. CI has been widely considered to be of nutritional origin, caused primarily by mineral deficiency or imbalance. However, the disease consists of a rapidly progressive periodontitis, affecting the periodontal tissues at the level of the premolars and molars during the period of tooth eruption generally starting in young calves. The disease led to great economic losses for farmers in central-western Brazil, after the occupation of new land for cattle raising in the 1960s and 1970s. The lateral enlargement of the maxillary bones of affected calves gave the disease the popular name of "cara inchada", i.e., swollen or enlarged face. The enlargement was found to be due to a chronic ossifying periostitis resulting from the purulent alveolitis of CI. Black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with Actinomyces (Corynebacterium) pyogenes, were isolated in large numbers from the periodontal lesions. B. melaninogenicus could be isolated in small numbers also from the marginal gingiva of a few healthy calves maintained on CI-free farms. "In vitro"-assays showed that streptomycin and actinomycin, as well as the supernatants of cultivates of actinomycetes from soils of CI-prone farms, applied in subinhibitory concentrations to the bacteria tested, enhanced significantly (up to 10 times) the adherence of the black-pigmented B.melaninogenicus to epithelial cells of the bovine gingiva. The antibiotics are apparently produced in large quantities by the increased number of soil actinomycetes, including the genus Streptomyces, that develop when soil microflora are modified by cultivating virgin forest or "Cerrado" (tree-savanna) for the first time for cattle grazing. The epidemiology of CI now provides strong evidence that the ingestion with the forage of such antibiotics could possibly be an important determinant factor for the onset and development of this infectious periodontitis. The antibiotic enhanced adherence of B.melaninogenicus to the sulcus-epithelium of the marginal gingiva, is thought to allow it to colonize, form a plaque and become pathogenic. There is experimental evidence that this determinant factor for the development of the periodontitis is present also in the milk of the mothers of CI-diseased calves. It has been shown that the bacteria isolated from the periodontal CI-lesions produce enzymes and endotoxins capable of destroying the periodontal tissues. The epidemiology of CI, with its decline in incidence and its disappearance after several years, could be explained by the fact that the former equilibrium of the microflora of the once undisturbed virgin soil has been reached again and that the number of antibiotic producing actinomycetes has been anew reduced. By this reasoning and all the data available, CI should be considered as a multifactorial infectious disease, caused primarily by the anaerobic black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with the micro-anaerobic Actinomyces pyogenes. Accordingly, the onset and development of the infectious periodontitis is apparently determined by ingestion with the forage of subinhibitory concentrations of antibiotics produced in recently cultivated virgin soils. This hypothesis is supported by the recent observation of renewed outbreaks of CI-periodontitis in former CI-prone areas, following fresh cultivation after many years. The infectious nature of CI is confirmed by trials in which virginiamycin was used efficiently for the oral treatment of CI-diseased cattle. Previously it has been shown, that spiramycin and virginiamycin, used as additives in mineral supplements, prevented CI-periodontitis.
Resumo:
Abstract:Trematodes belonging to the family Eucotylidae, including Tanaisia(Paratanaisia)bragaiSantos, 1934are parasites of the kidney and ureter that affect several species of domestic and wild birds. Tanaisia bragaiis considered a low pathogenic parasite, but high worm burdens may determine clinical complications, including signs of apathy, weight loss, diarrhea and death. This paper describes the first report of infection by T. bragai in peacocks (Pavo cristatus), which constitutes a new host record and offers data on the lesions associated to this parasitism, although the degree of pathogenicity and parasite load may be considered mild. These birds did not exhibit clinical signs of parasitism. The macroscopic exam revealed discreet yellow spots on the liver. In the histological sections of the kidney, specimens of T. bragai were found in the collecting ducts, which were markedly dilated, with a thickened wall. Other findings included a mild inflammatory reaction in the wall of the ducts (but sometimes absent), flattening of lining epithelial cells and small, multifocal points of calcification around the collecting ducts. The microscopic examination of the parasites revealed trematodes with an elongated body, well-developed sub terminal oral sucker, pharynx present, short esophagus, cecum somewhat undulating or not, with blind end, testes symmetrical, equatorial, irregular in shape or slightly lobed, vitelline fields extending in both pre-ovarian and post ovarian fields, uterus very long, intercecal or sometimes overlapping the cecum and containing large quantities of eggs. The present findings suggest the need for further diagnostic studies on the prevalence of this trematode in peacocks as well as pathologic studies for the determination of the potential pathogenicity of this parasite in this species of bird. Moreover, infected peacocks could serve as carriers of T. bragai to be transferred to other bird species, thereby contributing to the dispersion of the parasite.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures) was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines), allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39) and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV), may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.
Resumo:
Cholangiocarcinomas (CCs) are malignant tumors that originate from epithelial cells lining the biliary tree and gallbladder. Ras correlative C3 creotoxin substrate 1 (Rac1), a small guanosine triphosphatase, is a critical mediator of various aspects of endothelial cell functions. The objective of the present investigation was to study the effect of blocking Rac1 expression in CCs. Seventy-four extrahepatic CC (ECC) specimens and matched adjacent normal mucosa were obtained from the Department of Pathology, Inner Mongolia Medicine Hospital, between 2007 and 2009. Our results showed that the expression of Rac1 was significantly higher (53.12%) in tumor tissues than in normal tissues. Western blotting data indicated a significant reduction in Rac1-miRNA cell protein levels. Rac1-miRNA cell growth rate was significantly different at 24, 48, and 72 h after transfection. Flow cytometry analysis showed that Rac1-miRNA cells undergo apoptosis more effectively than control QBC939 cells. Blocking Rac1 expression by RNAi effectively inhibits the growth of CCs. miRNA silencing of the Rac1 gene suppresses proliferation and induces apoptosis of QBC939 cells. These results suggest that Rac1 may be a new gene therapy target for CC. Blocking Rac1 expression in CC cells induces apoptosis of these tumor cells and may thus represent a new therapeutic approach.
Resumo:
Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Studentt-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.