117 resultados para Nonspecific immune system
Resumo:
Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects millions of people in Latin America. Infection with T. cruzi cannot be eliminated by the immune system. A better understanding of immune evasion mechanisms is required in order to develop more effective vaccines. During the acute phase, parasites replicate extensively and release immunomodulatory molecules that delay parasite-specific responses mediated by T cells. This immune evasion allows the parasite to spread in the host. In the chronic phase, parasite evasion relies on its replication strategy of hijacking the TGF-β signaling pathway involved in inflammation and tissue regeneration. In this article, the mechanisms of immune evasion described for T. cruzi are reviewed.
Resumo:
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.
Resumo:
Allogeneic mesenchymal stem cells (allo-MSCs) have recently garnered increasing interest for their broad clinical therapy applications. Despite this, many studies have shown that allo-MSCs are associated with a high rate of graft rejection unless immunosuppressive therapy is administered to control allo-immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a co-inhibitory molecule expressed on T cells that mediates the inhibition of T-cell function. Here, we investigated the osteogenic differentiation potency of allo-MSCs in an activated immune system that mimics the in vivo allo-MSC grafting microenvironment and explored the immunomodulatory role of the helper T cell receptorCTLA4 in this process. We found that MSC osteogenic differentiation was inhibited in the presence of the activated immune response and that overexpression of CTLA4 in allo-MSCs suppressed the immune response and promoted osteogenic differentiation. Our results support the application of CTLA4-overexpressing allo-MSCs in bone tissue engineering.
Resumo:
The hamster check pouch is an invagination of oral mucosa, characterized histologically as skin-like. In this paper we describe anatomical, histological and embriological features of the pouch and coment on the pouch as an immunologically privileged site since it lacks lymphatic drainage and has few Langerhans cells. We present the review from literature and our observations after inoculation in the pouch of mycobacteriae (BCG, Mycobacterium tuberculosis and Mycobacterium leprae) and a fungus (Paracoccidioides brasiliensis). Lesions in the pouch were granulomatous but smaller and long lasting; even granulomatous, the reaction was inefficient to control the proliferation of agents compared with inoculation in other sites, except for BCG. Appearance of immunity was also delayed or absent and, when it was detected, a sharp decrease in number of agents in pouch lesions was observed. These observations make the pouch an interesting site for the study of the role of immune system in infeccious diseases and in granuloma formation.
Resumo:
Evaluation of TNF-alpha in patients with Kala-azar has drawn increasing interest due to its regulatory role on the immune system, in addition to its cachetizing activity. The objective of this study was to examine the association between plasma levels of TNF-alpha, measured by immunore-activity (ELISA) and bioactivity (cytotoxicity assay with L-929 cells), and clinical manifestations of visceral leishmaniasis. Plasma samples from 19 patients with Kala-azar were obtained before, during and at the end of antimonial therapy. TNF-alpha determinations was done by using the cytotoxicity assay (all patients) and the enzyme-linked immunoassay (ELISA - 14 patients). A discrepancy between results obtained by ELISA and cytotoxicity assay was observed. Levels of circulating TNF-alpha, assessed by ELISA, were higher in patients than in healthy controls, and declined significantly with improvement in clinical and laboratory parameters. Plasma levels before treatment were 124.7 ± 93.3 pg/ml (mean ± SD) and were higher than at the end of therapy 13.9 ± 25.1 pg/ml (mean ± SD) (p = 0.001). In contrast, plasma levels of TNF-alpha evaluated by cytotoxicity assay did not follow a predicted course during follow-up. Lysis, in this case, might be not totally attributed to TNF-alpha. The discrepancy might be attributed to the presence of factor(s) known to influence the release and activity of TNF-alpha.
Resumo:
Parasitic diseases which during their course in the host switch the immune system from a T helper 1 to a T helper 2 response may be detrimental to the host, contributing to granuloma formation, eosinophilia, hyper-IgE, and increased susceptibility to bacterial and fungal infections. Patients and animals with acute schistosomiasis and hyper-IgE in their serum develop pyogenic liver abscess in the presence of bacteremia caused by Staphylococcus aureus. The Salmonella-S. mansoni association has also been well documented. The association of tropical pyomyositis (pyogenic muscle abscess) and pyogenic liver abscess with Toxocara infection has recently been described in the same context. In tropical countries that may be an interesting explanation for the great morbidity of bacterial diseases. If the association of parasitic infections and pyogenic abscesses and/or fungal diseases are confirmed, there will be a strong case in favor of universal treatment for parasitic diseases to prevent or decrease the morbidity of superinfection with bacteria and fungi.
Resumo:
Listeria monocytogenes, etiological agent of severe human foodborne infection, uses sophisticated mechanisms of entry into host cytoplasm and manipulation of the cellular cytoskeleton, resulting in cell death. The host cells and bacteria interaction may result in cytokine production as Tumor Necrosis Factor (TNF) alpha. Hepatocytes have potential to produce pro-inflammatory cytokines as TNF-alpha when invaded by bacteria. In the present work we showed the behavior of hepatocytes invaded by L. monocytogenes by microscopic analysis, determination of TNF-alpha production by bioassay and analysis of the apoptosis through TUNEL technique. The presence of bacterium, in ratios that ranged from 5 to 50,000 bacteria per cell, induced the rupture of cellular monolayers. We observed the presence of internalized bacteria in the first hour of incubation by electronic microscopy. The levels of TNF-alpha increased from first hour of incubation to sixth hour, ranging from 0 to 3749 pg/mL. After seven and eight hours of incubation non-significant TNF-alpha levels decrease occurred, indicating possible saturation of cellular receptors. Thus, the quantity of TNF-alpha produced by hepatocytes was dependent of the incubation time, as well as of the proportion between bacteria and cells. The apoptosis rate increased in direct form with the incubation time (1 h to 8 + 24 h), ranging from 0 to 43%, as well as with the bacteria : cells ratio. These results show the ability of hepatocyte invasion by non-hemolytic L. monocytogenes, and the main consequences of this phenomenon were the release of TNF-alpha by hepatocytes and the induction of apoptosis. We speculate that hepatocytes use apoptosis induced by TNF-alpha for release bacteria to extracellular medium. This phenomenon may facilitate the bacteria destruction by the immune system.
Resumo:
In order to determine the role of lysozyme, an antimicrobial peptide belonging to the innate immune system, against the dimorphic fungus Paracoccidioides brasiliensis, co-cultures of the MH-S murine alveolar macrophages cell line with P. brasiliensis conidia were done; assays to evaluate the effect of physiological and inflammatory concentrations of lysozyme directly on the fungus life cycle were also undertaken. We observed that TNF-α-activated macrophages significantly inhibited the conidia to yeast transition (p = 0.0043) and exerted an important fungicidal effect (p = 0.0044), killing 27% more fungal propagules in comparison with controls. Nonetheless, after adding a selective inhibitor of lysozyme, the fungicidal effect was reverted. When P. brasiliensis propagules were exposed directly to different concentrations of lysozyme, a dual effect was observed. Physiologic concentrations of the enzyme facilitated the conidia-to-yeast transition process (p < 0.05). On the contrary, inflammatory concentrations impaired the normal temperature-dependant fungal transition (p < 0.0001). When yeast cells were exposed to lysozyme, irrespective of concentration, the multiple-budding ability was badly impaired (p < 0.0001). In addition, ultra-structural changes such as subcellular degradation, fusion of lipid vacuoles, lamellar structures and interruption of the fibrilar layer were observed in lysozyme exposed conidia. These results suggest that lysozyme appears to exert a dual role as part of the anti-P. brasiliensis defense mechanisms.
Resumo:
Visceral leishmaniasis is caused by protozoan parasites of the Leishmania donovani complex. During active disease in humans, high levels of IFN-γ and TNF-α detected in blood serum, and high expression of IFN-γ mRNA in samples of the lymphoid organs suggest that the immune system is highly activated. However, studies using peripheral blood mononuclear cells have found immunosuppression specific to Leishmania antigens; this poor immune response probably results from Leishmania antigen-engaged lymphocytes being trapped in the lymphoid organs. To allow the parasites to multiply, deactivating cytokines IL-10 and TGF-β may be acting on macrophages as well as anti-Leishmania antibodies that opsonize amastigotes and induce IL-10 production in macrophages. These high activation and deactivation processes are likely to occur mainly in the spleen and liver and can be confirmed through the examination of organ samples. However, an analysis of sequential data from studies of visceral leishmaniasis in hamsters suggests that factors outside of the immune system are responsible for the early inactivation of inducible nitric oxide synthase, which occurs before the expression of deactivating cytokines. In active visceral leishmaniasis, the immune system actively participates in non-lymphoid organ lesioning. While current views only consider immunocomplex deposition, macrophages, T cells, cytokines, and immunoglobulins by diverse mechanism also play important roles in the pathogenesis.
Resumo:
In order to better understand the biology of Centrocestus formosanus in a definitive host model, mice of Swiss and AKR/J strains were experimentally infected with 100 metacercariae of the parasite. Fourteen days post-infection, the rodents were killed and adult trematodes were recovered from the small intestine. The percentage of parasite recovery from AKR/J mice (11.4%) was significantly higher than that from Swiss mice (5.3%). Moreover, trematodes recovered from the AKR/J strain were more developed and had greater fecundity. Peculiarities concerning the mices immune system could explain the difference in susceptibility and in worm development seen in the present study. The data obtained confirm that mice are susceptible to infection with C. formosanus and indicate that the AKR/J strain provides a more favorable environment for parasite development.
Resumo:
Leprosy is a chronic disease caused by Mycobacterium leprae, highly incapacitating, and with systemic involvement in some cases. Renal involvement has been reported in all forms of the disease, and it is more frequent in multibacillary forms. The clinical presentation is variable and is determined by the host immunologic system reaction to the bacilli. During the course of the disease there are the so called reactional states, in which the immune system reacts against the bacilli, exacerbating the clinical manifestations. Different renal lesions have been described in leprosy, including acute and chronic glomerulonephritis, interstitial nephritis, secondary amyloidosis and pyelonephritis. The exact mechanism that leads to glomerulonephritis in leprosy is not completely understood. Leprosy treatment includes rifampicin, dapsone and clofazimine. Prednisone and non-steroidal anti-inflammatory drugs may be used to control acute immunological episodes.
TUBERCULOSIS INFECTION MIGHT INCREASE THE RISK OF INVASIVE CANDIDIASIS IN AN IMMUNOCOMPETENT PATIENT
Resumo:
Deep Candida infections commonly occur in immunosuppressed patients. A rare case of a multiple deep organ infection with Candida albicansand spinal tuberculosis was reported in a healthy young man. The 19-year-old man complained of month-long fever and lower back pain. He also had a history of scalded mouth syndrome. Coinfection with Mycobacterium tuberculosis and Candida albicans was diagnosed using the culture of aspirates from different regions. Symptoms improved considerably after antifungal and antituberculous therapy. This case illustrates that infection with tuberculosis might impair the host's immune system and increase the risk of invasive candidiasis in an immunocompetent patient.
Resumo:
SUMMARY Cerebral toxoplasmosis can be highly debilitating and occasionally fatal in persons with immune system deficiencies. In this study, we evaluated the Toxoplasma gondii-specific IgG subclass antibody response in 19 cerebrospinal fluid (CSF) samples from patients with cerebral toxoplasmosis who had a positive IgG anti-T. gondii ELISA standardized with a cyst antigen preparation. There were no significant differences between the rates of positivity and the antibody concentrations (arithmetic means of the ELISA absorbances, MEA) for IgG1 and IgG2, but the rates of positivity and MEA values for these two IgG subclasses were significantly higher than those for IgG3 and IgG4. The marked IgG2 response in CSF from patients with cerebral toxoplasmosis merits further investigation.