48 resultados para Non-orthologous gene displacement
Resumo:
Most of the Brazilian HIV-1 samples have been characterized based on the structural genes (env, gag and pol) and no data concerning the variability of the accessory genes such as nef have been available so far. Considering the role of the nef on virus biology and the inclusion of this region in some HIV/AIDS vaccine products under testing, the purpose of this study was to document the genetic diversity of the nef gene in third-four HIV-1 Brazilian samples previously subtyped based on the env C2-V3 region. Although only few non-subtype B samples have already been analyzed so far, the cytotoxic Tlymphocyte epitopes encoded in this region were relatively conserved among the subtypes, with some amino acid signatures mainly in the subtype C samples. Considering the increasing of the non-B HIV-1 subtypes worldwide, in special the subtype C, more data should be generated concerning the genetic and antigenic variability of these subtypes, as well as the study of the impact of such polymorphism in HIV/AIDS vaccine design and testing.
Resumo:
The hepatitis A virus (HAV) HAF-203 strain was isolated from an acute case of HAV infection. The primary isolation of HAF-203 in Brazil and its adaptation to the FRhK-4 cell lineage allowed the production of large amounts of viral particles enabling molecular characterization of the first HAV isolate in Brazil. The aim of our study was to determine the nucleotide sequence of the HAF-203 strain genome, compare it to other HAV genomes and highlight its genetic variability. The complete nucleotide sequence of the HAF-203 strain (7472 nucleotides) was compared to those obtained earlier by others for other HAV isolates. These analyses revealed 19 HAF-specific nucleotide sequence differences with 10 amino acid substitutions. Most of the non-conservative changes were located at VP1, 2C, and 3D genes, but the 3B region was the most variable. The availability of HAF-203 complementary DNA was useful for the production of the recombinant VP1 protein, which is a major determinant of viral infectivity. This recombinant protein was shown by enzyme-linked immunoassay and blotting, to be immunogenic and resemble the native protein, therefore suggesting its value as a reagent for incorporation into diagnostic tests.
Resumo:
Adenoviruses (AdV) are commonly involved in acute respiratory infections (ARI), which cause high morbidity and mortality in children. AdV are grouped in six species (A-F), which are associated with a wide range of diseases. The aim of this study was to identify the AdV species infecting non-hospitalized Mexican children with ARI symptoms, attending to the same school. For that, a PCR/RFLP assay was designed for a region of the hexon gene, which was chosen, based on the bioinformatical analysis of AdV genomes obtained from GenBank. A total of 100 children's nasopharyngeal samples were collected from January to June, 2005, and used for viral isolation in A549 cells and PCR/RFLP analysis. Only 15 samples produced cytopathic effect, and in all of them AdV C was identified. AdV C was also identified in eight additional nasopharyngeal samples which were negative for viral isolation. In summary, this outpatient population showed a rate of AdV infection of 23%, and only AdV C was detected.
Resumo:
The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.
Resumo:
Small nucleolar RNAs (snoRNAs) are small non-coding RNAs that modify RNA molecules such as rRNA and snRNA by guiding 2'-O-ribose methylation (C/D box snoRNA family) and pseudouridylation reactions (H/ACA snoRNA family). H/ACA snoRNAs are also involved in trans-splicing in trypanosomatids. The aims of this work were to characterise the Cl gene cluster that encodes several snoRNAs in Trypanosoma rangeli and compare it with clusters from Trypanosoma cruzi, Trypanosoma brucei, Leishmania major, Leishmania infantum, Leishmania braziliensis and Leptomonas collosoma. The T. rangeli Cl gene cluster is an 801 base pair (bp) repeat sequence that encodes three C/D (Cl1, Cl2 and Cl4) and three H/ACA (Cl3, Cl5 and Cl6) snoRNAs. In contrast to T. brucei, the Cl3 and Cl5 homologues have not been annotated in the Leishmania or T. cruzi genome projects (http//:www.genedb.org). Of note, snoRNA transcribed regions have a high degree of sequence identity among all species and share gene synteny. Collectively, these findings suggest that the Cl cluster could constitute an interesting target for therapeutic (gene silencing) or diagnostic intervention strategies (PCR-derived tools).
Resumo:
The pathogenesis of Chagas disease cardiomyopathy (CCC) is not well understood. Since studies show that myocarditis is more frequent during the advanced stages of the disease, and the prognosis of CCC is worse than that of other dilated cardiomyopathies of non-inflammatory aetiology, which suggest that the inflammatory infiltrate plays a major role in myocardial damage. In the last decade, increasing evidence has shown that inflammatory cytokines and chemokines play a role in the generation of the inflammatory infiltrate and tissue damage. CCC patients have an increased peripheral production of the inflammatory Th1 cytokines IFN-³ and TNF-± when compared to patients with the asymptomatic/indeterminate form. Moreover, Th1-T cells are the main producers of IFN-³ and TNF-± and are frequently found in CCC myocardial inflammatory infiltrate. Over the past several years, our group has collected evidence that shows several cytokines and chemokines produced in the CCC myocardium may also have a non-immunological pathogenic effect via modulation of gene and protein expression in cardiomyocytes and other myocardial cell types. Furthermore, genetic polymorphisms of cytokine, chemokine and innate immune response genes have been associated with disease progression. We will review the molecular and immunological mechanisms of myocardial damage in human CCC in light of recent findings.
Resumo:
This study identified and characterised class 1 and 2 integrons in clinical and environmental Vibrio cholerae O1 and non-O1/non-O139 strains isolated from the Brazilian Amazon. The aadA2 and aadA7 gene cassettes were found in class 1 integrons in two genotypes of environmental V. cholerae non-O1/non-O139. Empty integrons were found in strains from the Brazilian cholera epidemic. A class 2 integron was detected in one strain from the V. cholerae Amazonia lineage harbouring sat1 and aadA1 genes. All isolates were resistant to aminoglycosides, indicating aadA functionality. These findings suggest that environmental bacteria act as cassette reservoirs that favour the emergence of resistant pathogens.
Resumo:
Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.
Resumo:
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Resumo:
Grapevine leafroll-associated virus 3 (GLRaV-3), the main viral species of the grapevine leafroll complex, causes yield and quality reduction in grapes (Vitis spp.). The coat protein gene was RT-PCR-amplified from total RNA extracted from infected grapevine leaves and the amplified fragment was cloned and completely sequenced. The fragment was subsequently subcloned into the pRSET-C expression vector. The recombinant plasmid was used to transform Escherichia coli BL21:DE3 and express the capsid protein. The coat protein, fused to a 6 His-tag, was purified by affinity chromatography using an Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE and Western blot. The in vitro-expressed protein was quantified and used for rabbit immunizations. The antiserum was shown to be sensitive and specific for the detection of GLRaV-3 in grapevine extracts in Western blot and DAS-ELISA assays, with no unspecific or heterologous reactions against other non-serologically related viruses being observed.
Resumo:
This paper reports on the development and validation of a loop-mediated isothermal amplification assay (LAMP) for the rapid and specific detection of Actinobacillus pleuropneumoniae (A. pleuropneumoniae). A set of six primers were designed derived from the dsbE-like gene of A.pleuropneumoniae and validate the assay using 9 A. pleuropneumoniae reference/field strains, 132 clinical isolates and 9 other pathogens. The results indicated that positive reactions were confirmed for all A. pleuropneumoniae strains and specimens by LAMP at 63ºC for 60 min and no cross-reactivity were observed from other non-A.pleuropneumoniae including Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Bordetella bronchiseptica, Streptococcus suis, Salmonella enterica, Staphylococcus, porcine reproductive and respiratory syndrome virus (PRRSV), and Pseudorabies virus. The detection limit of the conventional PCR was 10² CFU per PCR test tube, while that of the LAMP was 5 copies per tube. Therefore, the sensitivity of LAMP was higher than that of PCR. Moreover, the LAMP assay provided a rapid yet simple test of A. pleuropneumoniae suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction.
Resumo:
Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.
Resumo:
A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome
Resumo:
The human immunoglobulin lambda variable locus (IGLV) is mapped at chromosome 22 band q11.1-q11.2. The 30 functional germline v-lambda genes sequenced untill now have been subgrouped into 10 families (Vl1 to Vl10). The number of Vl genes has been estimated at approximately 70. This locus is formed by three gene clusters (VA, VB and VC) that encompass the variable coding genes (V) responsible for the synthesis of lambda-type Ig light chains, and the Jl-Cl cluster with the joining segments and the constant genes. Recently the entire variable lambda gene locus was mapped by contig methodology and its one- megabase DNA totally sequenced. All the known functional V-lambda genes and pseudogenes were located. We screened a human genomic DNA cosmid library and isolated a clone with an insert of 37 kb (cosmid 8.3) encompassing four functional genes (IGLV7S1, IGLV1S1, IGLV1S2 and IGLV5a), a pseudogene (VlA) and a vestigial sequence (vg1) to study in detail the positions of the restriction sites surrounding the Vl genes. We generated a high resolution restriction map, locating 31 restriction sites in 37 kb of the VB cluster, a region rich in functional Vl genes. This mapping information opens the perspective for further RFLP studies and sequencing
Resumo:
We have developed a procedure for nonradioactive single strand conformation polymorphism analysis and applied it to the detection of point mutations in the human tumor suppressor gene p53. The protocol does not require any particular facilities or equipment, such as radioactive handling, large gel units for sequencing, or a semiautomated electrophoresis system. This technique consists of amplification of DNA fragments by PCR with specific oligonucleotide primers, denaturation, and electrophoresis on small neutral polyacrylamide gels, followed by silver staining. The sensitivity of this procedure is comparable to other described techniques and the method is easy to perform and applicable to a variety of tissue specimens.