38 resultados para Non-linear wave equations
Resumo:
OBJECTIVE: To examine whether the low birth weight (LBW) paradox exists in Brazil. METHODS: LBW and cesarean section rates between 1995 and 2007 were estimated based on data from SINASC (Brazilian Live Births Database). Infant mortality rates (IMRs) were obtained using an indirect method that correct for underreporting. Schooling information was obtained from census data. Trends in LBW rate were assessed using joinpoint regression models. The correlations between LBW rate and other indicators were graphically assessed by lowess regression and tested using Spearman's rank correlation. RESULTS: In Brazil, LBW rate trends were non-linear and non-significant: the rate dropped from 7.9% in 1995 to 7.7% in 2000, then increased to 8.2% in 2003 and remained nearly steady thereafter at 8.2% in 2007. However, trends varied among Brazilian regions: there were significant increases in the North from 1999 to 2003 (2.7% per year), and in the South (1.0% per year) and Central-West regions (0.6% per year) from 1995 to 2007. For the entire period studied, higher LBW and lower IMRs were seen in more developed compared to less developed regions. In Brazilian States, in 2005, the higher the IMR rate, the lower the LBW rate (p=0.009); the lower the low schooling rate, the lower the LBW rate (p=0.007); the higher the number of neonatal intensive care beds per 1,000 live births, the higher the LBW rate (p=0.036). CONCLUSIONS: The low birth weight paradox was seen in Brazil. LBW rate is increasing in some Brazilian regions. Regional differences in LBW rate seem to be more associated to availability of perinatal care services than underlying social conditions.
Resumo:
OBJECTIVE: To assess safety and efficacy of coronary angioplasty with stent implantation in unstable coronary syndromes. METHODS: Retrospective analysis of in-hospital and late evolution of 74 patients with unstable coronary syndromes (unstable angina or infarction without elevation of the ST segment) undergoing coronary angioplasty with stent placement. These 74 patients were compared with 31 patients with stable coronary syndromes (stable angina or stable silent ischemia) undergoing the same procedure. RESULTS: No death and no need for revascularization of the culprit artery occurred in the in-hospital phase. The incidences of acute non-Q-wave myocardial infarction were 1.4% and 3.2% (p=0.6) in the unstable and stable coronary syndrome groups, respectively. In the late follow-up (11.2±7.5 months), the incidences of these events combined were 5.7% in the unstable coronary syndrome group and 6.9% (p=0.8) in the stable coronary syndrome group. In the multivariate analysis, the only variable with a tendency to significance as an event predictor was diabetes mellitus (p=0.07; OR=5.2; 95% CI=0.9-29.9). CONCLUSION: The in-hospital and late evolutions of patients with unstable coronary syndrome undergoing angioplasty with intracoronary stent implantation are similar to those of the stable coronary syndrome group, suggesting that this procedure is safe and efficacious when performed in unstable coronary syndrome patients.
Resumo:
OBJECTIVE: To assess the feasibility and safety of coronary interventions performed through the radial artery. METHODS: We studied 103 patients with ages from 38 to 86 years (57±8.7), 90 (87%) males, and: radial pulse with a good amplitude, presence of ulnar pulse, a good collateral flow through the palmar arch assessed with the Allen's test. RESULTS: The vascular approach was obtained in 97 (94%) patients, 88 (91%) treated electively and 9 (9%) during acute myocardial infarction, for primary angioplasty; 56 (64%) unstable angina; 22 (25%) stable angina; 10 (11%) were asymptomatic, 6 referred for recanalization of chronic occlusion and 4 silent ischemia in the first week after acute myocardial infarction. We approached 107 arteries: anterior descending artery, 49 (46%); right coronary artery, 27 (25%); circumflex artery, 25 (23%); diagonal artery, 6 (6%); and 2 saphenous vein bypass grafts. We treated 129 lesions: 80 (62%) B2 type; 23 (18%) B1 type; 17 (13%) C type; and 9 (7%). A type. There were 70 stents , and 59 balloon angioplasties performed. Thirty-two (33%) patients used GP IIb/IIIa inhibitors. The mean duration of the elective procedure was 42.3±12.8 min. Success, correct stent deployment and residual lesion <20%, was reached in 100% of the lesions treated with stent implantation; arterial dilation with residual lesion <50% was obtained in 96% of the lesions treated with transluminal coronary angioplasty (TCA). Complications, were: 1 (1.0%) non-Q-wave acute myocardial infarction; 2 (2%) hematomas in the forearm; and 2 losses of radial pulse. CONCLUSION: Radial artery aproach is practical and safe for percutaneous coronary interventions there was a low incidence of complications.
Resumo:
The relationship between body size and geographic range was analyzed for 70 species of terrestrial Carnivora ("fissipeds") of the New World, after the control of phylogenetic patterns in the data using phylogenetic eigenvector regression. The analysis from EcoSim software showed that the variables are related as a triangular envelope. Phylogenetic patterns in data were detected by means of phylogenetic correlograms, and 200 simulations of the phenotypic evolution were also performed over the phylogeny. For body size, the simulations suggested a non-linear relationship for the evolution of this character along the phylogeny. For geographic range size, the correlogram showed no phylogenetic patterns. A phylogenetic eigenvector regression was performed on original data and on data simulated under Ornstein-Uhlenbeck process. Since both characters did not evolve under a simple Brownian motion process, the Type I errors should be around 10%, compatible with other methods to analyze correlated evolution. The significant correlation of the original data (r = 0.38; P < 0.05), as well as the triangular envelope, then indicate ecological and adaptive processes connecting the two variables, such as those proposed in minimum viable population models.
Resumo:
Different urban structures might affect the life history parameters of Aedes aegypti and, consequently, dengue transmission. Container productivity, probability of daily survival (PDS) and dispersal rates were estimated for mosquito populations in a high income neighbourhood of Rio de Janeiro. Results were contrasted with those previously found in a suburban district, as well as those recorded in a slum. After inspecting 1,041 premises, domestic drains and discarded plastic pots were identified as the most productive containers, collectively holding up to 80% of the total pupae. In addition, three cohorts of dust-marked Ae. aegypti females were released and recaptured daily using BGS-Traps, sticky ovitraps and backpack aspirators in 50 randomly selected houses; recapture rate ranged from 5-12.2% within cohorts. PDS was determined by two models and ranged from 0.607-0.704 (exponential model) and 0.659-0.721 (non-linear model), respectively. Mean distance travelled varied from 57-122 m, with a maximum dispersal of 263 m. Overall, lower infestation indexes and adult female survival were observed in the high income neighbourhood, suggesting a lower dengue transmission risk in comparison to the suburban area and the slum. Since results show that urban structure can influence mosquito biology, specific control strategies might be used in order to achieve cost-effective Ae. aegypti control.
Field optimisation of MosquiTRAP sampling for monitoring Aedes aegypti Linnaeus (Diptera: Culicidae)
Resumo:
A sticky trap designed to capture gravid Aedes (Stegomyia) aegypti mosquitoes, MosquiTRAP, has been evaluated for monitoring this species in Brazil. However, the effects of trap densities on the capture rate of Ae. aegypti females and the sensitivity of vector detection are still unknown. After a preliminary study has identified areas of high and low female mosquito abundance, a set of experiments was conducted in four neighbourhoods of Belo Horizonte (state of Minas Gerais, Brazil) using densities of 1, 2, 4, 8, 16, 32 and 64 traps per block. Trap sensitivity (positive MosquiTRAP index) increased significantly when 1-8 MosquiTRAPs were installed per block in both high and low abundance areas. A strong fit was obtained for the total number of mosquitoes captured with increasing trap densities through a non-linear function (Box-Lucas) (r² = 0,994), which likely exhibits saturation towards an equilibrium level. The capacity of the Mean Female Aedes Index to distinguish between areas of high and low Ae. aegypti abundance was also investigated; the achieved differentiation was shown to be dependent on the MosquiTRAP density.
Resumo:
Comprehensive approach study aimed understanding the reflections and contrasts between personal time and medical therapy protocol time in the life of a young woman with breast cancer. Addressed as a situational study and grounded in Beth’s life story about getting sick and dying of cancer at age 34, the study’s data collection process employed interviews, observation and medical record analysis. The construction of the analytic-synthetic box based on the chronology of Beth’s clinical progression, treatment phases and temporal perception of occurrences enabled us to point out a linear medical therapy protocol time identified by the diagnosis and treatment sequencing process. On the other hand, Beth’s experienced time was marked by simultaneous and non-linear events that generated suffering resulting from the disease. Such comprehension highlights the need for healthcare professionals to take into account the time experienced by the patient, thus providing an indispensable cancer therapeutic protocol with a personal character.
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.
Resumo:
The nutritional state of the pineapple plant has a large effect on plant growth, on fruit production, and fruit quality. The aim of this study was to assess the uptake, accumulation, and export of nutrients by the irrigated 'Vitória' pineapple plant during and at the end of its development. A randomized block statistical design with four replications was used. The treatments were defined by different times of plant collection: at 270, 330, 390, 450, 510, 570, 690, 750, and 810 days after planting (DAP). The collected plants were separated into the following components: leaves, stem, roots, fruit, and slips for determination of fresh and dry matter weight at 65 ºC. After drying, the plant components were ground for characterization of the composition and content of nutrients taken up and exported by the pineapple plant. The results were subjected to analysis of variance, and non-linear regression models were fitted for the significant differences identified by the F test (p<0.01). The leaves and the stem were the plant components that showed the greatest accumulation of nutrients. For production of 72 t ha-1 of fruit, the macronutrient accumulation in the 'Vitória' pineapple exhibited the following decreasing order: K > N > S > Ca > Mg > P, which corresponded to 898, 452, 134, 129, 126, and 107 kg ha-1, respectively, of total accumulation. The export of macronutrients by the pineapple fruit was in the following decreasing order: K > N > S > Ca > P > Mg, which was equivalent to 18, 17, 11, 8, 8, and 5 %, respectively, of the total accumulated by the pineapple. The 'Vitória' pineapple plant exported 78 kg ha-1 of N, 8 kg ha-1 of P, 164 kg ha-1 of K, 14 kg ha-1 of S, 10 kg ha-1 of Ca, and 6 kg ha-1 of Mg by the fruit. The nutrient content exported by the fruits represent important components of nutrient extraction from the soil, which need to be restored, while the nutrients contained in the leaves, stems and roots can be incorporated in the soil within a program of recycling of crop residues.
Resumo:
The control and regrowth after nicosulfuron reduced rate treatment of Johnsongrass (Sorghum halepense L. Pers.) populations, from seven Argentinean locations, were evaluated in pot experiments to assess if differential performance could limit the design and implementation of integrated weed management programs. Populations from humid regions registered a higher sensibility to reduced rates of nicosulfuron than populations from subhumid regions. This effect was visualised in the values of regression coefficient of the non-linear models (relating fresh weight to nicosulfuron rate), and in the time needed to obtain a 50% reduction of photosynthesis rate and stomatal conductance. The least leaf CO2 exchange of subhumid populations could result in a lower foliar absorption and translocation of nicosulfuron, thus producing less control and increasing their ability to sprout and produce new aerial biomass. The three populations from subhumid regions, with less sensibility to nicosulfuron rates, presented substantial difference in fresh weight, total rhizome length and number of rhizome nodes, when they were evaluated 20 week after treatment. In consequence, a substantial Johnsongrass re-infestation could occur, if rates below one-half of nicosulfuron labeled rate were used to control Johnsongrass in subhumid regions.
Resumo:
Data was analyzed on development of the solanaceen fruit crop Cape gooseberry to evaluate how well a classical thermal time model could describe node appearance in different environments. The data used in the analysis were obtained from experiments conducted in Colombia in open fields and greenhouse condition at two locations with different climate. An empirical, non linear segmented model was used to estimate the base temperature and to parameterize the model for simulation of node appearance vs. time. The base temperature (Tb) used to calculate the thermal time (TT, ºCd) for node appearance was estimated to be 6.29 ºC. The slope of the first linear segment was 0.023 nodes per TT and 0.008 for the second linear segment. The time at which the slope of node apperance changed was 1039.5 ºCd after transplanting, determined from a statistical analysis of model for the first segment. When these coefficients were used to predict node appearance at all locations, the model successfully fit the observed data (RSME=2.1), especially for the first segment where node appearance was more homogeneous than the second segment. More nodes were produced by plants grown under greenhouse conditions and minimum and maximum rates of node appearance rates were also higher.
Resumo:
We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.
Resumo:
In this work we describe the synthesis and characterization of chalcogenide glass (0.3La2S3-0.7Ga2S 3) with low phonons frequencies. Several properties were measured like Sellmeier parameters, linear refractive index dispersion and material dispersion. Samples with the composition above were doped with Dy2S3. The absorption and emission characteristics were measured by electronic spectroscopy and fluorescence spectrum respectively. Raman and infrared spectroscopy shows that these glasses present low phonons frequencies and strucuture composed by GaS4 tetrahedrals. The Lines model was used for calculate the coefficients values of the non linear refractive index.