64 resultados para Nitrogen effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium and nitrogen are the elements present in the highest percentage in the onion dry matter. The objective of this experiment was to evaluate yield and post-harvest conservation of Vale Ouro IPA-11 onion cultivar regarding to nitrogen and potassium levels. The experiment was carried out in Petrolina-PE, Brazil, from June to September 2009. The experimental design was a completely randomized block in a 4 x 3 factorial design, composed of four nitrogen levels (0, 60, 120 and 180 kg ha-1) and three potassium levels (0, 90 and 180 kg ha-1) with three replications. The highest yield of commercial bulbs was achieved at an estimated N level of 172.6 kg ha-1. The lowest yield of noncommercial bulbs was estimated at N level of 147.0 kg ha-1. Lower percentage of smaller bulbs (class 2) were obtained by increasing levels of N x K, with a quadratic effect at the dose of 90 kg ha-1 K2O and minimum production point with 127.6 kg N ha-1 (20.3%). Regarding larger caliber bulbs (class 4), linear effects were found both in the absence and for the level of 90 kg ha-1 of K2O as levels of N were increased. When the highest level of 180 kg ha-1 K2O was applied, the level of 92.8 kg ha-1 of N was estimated as the one that would promote the highest bulb yield of this class (35.4%), and 5.3% was found in the lack of potassium fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plant's nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the mayze white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress P+. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú), five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1), and application or no application of a growth reducer, with three replications. The following characteristics were evaluated: plant height, SPAD index, leaf area index (LAI), Global Radiation Interception (GRI) and grain yield. The Tukey test (p < 0.05) was used for the comparison between the means of cultivar and growth reducer factors, and for a regression analysis to evaluate N levels. Increasing the dose of nitrogen promotes an increase in LAI of plants of wheat crops differently among cultivars, which leads to a greater degree of global radiation interception. At doses higher or equal to 120 Kg ha-1 of nitrogen, there are significant differences in grain yield between treatments with and without the application of the growth reducer. The significant interaction between growth reducer and nitrogen dose, showed that applications of growth reducer increase the GRI at doses above and below 80 Kg ha-1 of nitrogen. Nitrogen rates of 138 and 109 Kg ha-1 are responsible for maximum grain yields of wheat, which is 4235 and 3787 Kg ha-1 with and without the use of growth reducer, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT New nitrogen fertilizers are available in the market actually, however, does not have results on the efficiency of the Cerrado conditions. With that objective of this study was to evaluate the effect of urea including stabilized and controlled release urea on yield of irrigated common beans (Phaseolus vulgaris L) in no-tillage system. The experiment was conducted in the winter crop, at Embrapa Arroz e Feijão, in Santo Antônio de Goiás, State of Goiás, Brazil. The experimental design was randomized blocks, with five replicates. Treatments consisted of five N sources (urea, urea + NBPT, urea + polymer, ammonium sulphate, and ammonium nitrate) and a control (without N) being applied 20 kg ha-1 of N at sowing and 80 kg ha-1 onf N in topdressing. We evaluated the chlorophyll content in leaves of common beans, the leaf N content and dry mass weight (MSPA) in the flowering of common beans, the number of pods per plant, number of grains per pod, mass of 100 grains, grain yield and final stand of the common beans. The sources of nitrogen fertilizer did not influence, leaf N content, the mass of MSPA and the relative chlorophyll index of common beans. The use of polymerized urea and urea with urease inhibitor, did not produce increases in the number of grains per pod, number of pods per plant, mass of 100 grains and common beans yield compared to traditional sources of N, urea, ammonium sulfate and ammonium nitrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The objective of the present study was to evaluate the effect of nitrogen doses applied via fertigation and associated with different types of crop establishment fertilization on growth and biomass of radish. The experiment was conducted in a greenhouse of the Academic Unit of Agricultural Engineering, Federal University of Campina Grande, from April to May 2014. Treatments consisted of five doses of nitrogen fertilizer applied by fertigation (0, 0.7, 1.4, 2.1 and 2.8g per pot) and three types of crop establishment fertilization (humus 2:2; NPK and control), arranged in a 5 x 3 factor design with four repetitions. The 15 treatments were arranged in 60 plots. The nitrogen source used in the study was urea, divided in three applications: the first application was carried out eight days after transplanting, the second, on day 15, and the third, on day 22. The crop establishment fertilization significantly influenced the growth variables and plant mass of the radish on day 35 after transplanting. The highest values of the variables (number of leaves, plant height, bulb diameter, leaf area, fresh mass of the aerial part, dry mass of the aerial part and root/aerial part were observed in the treatment with humus on day 35 after transplanting. The dose of 2.8g nitrogen per pot corresponding to 6.22g of urea per plant provided the highest yield for the variable number of leafs, leaf area and root length on day 35 after transplanting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT One of the most important effects derived from the intensive land use is the increase of nutrient concentration in the aquatic systems due to superficial drainage. Besides, the increment of precipitations in South America connected to the global climate change could intensify these anthropic impacts due to the changes in the runoff pattern and a greater discharge of water in the streams and rivers. The pampean streams are singular environments with high natural nutrient concentrations which could be increased even more if the predictions of global climate change for the area are met. In this context, the effect of experimental nutrient addition on macroinvertebrates in a lowland stream is studied. Samplings were carried out from March 2007 to February 2009 in two reaches (fertilized and unfertilized), upstream and downstream from the input of nutrients. The addition of nutrients caused an increase in the phosphorus concentration in the fertilized reach which was not observed for nitrogen concentration. From all macroinvertebrates studied only two taxa had significant differences in their abundance after fertilization: Corbicula fluminea and Ostracoda. Our results reveal that the disturbance caused by the increase of nutrients on the benthic community depends on basal nutrients concentration. The weak response of macroinvertebrates to fertilization in the pampean streams could be due to their tolerance to high concentrations of nutrients in relation to their evolutionary history in streams naturally enriched with nutrients. Further research concerning the thresholds of nutrients affecting macroinvertebrates and about the adaptive advantages of taxa in naturally eutrophic environments is still needed. This information will allow for a better understanding of the processes of nutrient cycling and for the construction of restoration measures in natural eutrophic ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolisms of reactive nitrogen and oxygen intermediates (RNI and ROI) in patients with cutaneous leishmaniasis (CL) were investigated and compared with those of healthy subjects. To determine RNI metabolism, nitrite plus nitrate concentrations were measured spectrophotometrically. Nitrite concentration in plasma was determined directly by the Griess method. Nitrate levels in plasma were measured after reduction into nitrite by using copper-cadmium-zinc. ROI metabolism was evaluated by measuring erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Plasma nitrite plus nitrate levels and erythrocyte superoxide dismutase activity were higher in the patient group than healthy subjects (p<0.01). In contrast, erythrocyte catalase and glutathione peroxidase activities were lower (p<0.05, p<0.01, respectively). ROI metabolism was altered in relation to hydrogen peroxide elevation in patients with CL. These alterations in ROI enable nitric oxide (NO) to amplify its leishmanicidal effect. The determination of ROI and RNI in patients with CL may be a useful tool to evaluate effector mechanisms of NO and clinical manifestations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, Bradyrhizobium inoculation has successfully replaced the use of N fertilizer on soybean [Glycine max (L) Merr.] crops. However, with the expansion of no-tillage cropping systems in the Cerrados region, the idea that it is necessary to use small N rates at the sowing to overcome problems related with N immobilization has become widespread, mainly when soybean is cultivated after a non-legume crop. In this study we examined soybean response to small rates of N fertilizer under no-tillage (NT) and conventional tillage (CT) systems. Four experiments (a completely randomized block with five replicates) were carried out in a red yellow oxisol, during the periods of 1998/1999 and 1999/ 2000, under NT and CT. The treatments consisted of four urea rates (0, 20, 30 and 40 kg ha-1 N). All treatments were inoculated with Bradyrhizobium japonicum strains SEMIA 5080 and SEMIA 5079, in the proportion 1 kg of peat inoculant (1,5 x 10(9) cells g-1) per 50 kg of seeds. In both experiments, soybean was cultivated after corn and the N fertilizer was band applied at sowing. In all experiments, N rates promoted reductions of up to 50 % in the nodule number at 15 days after the emergence. Regardless of the management system, these reductions disappeared at the flowering stage and there was no effect of N rates on either the number and dry weight of nodules or on soybean yields. Therefore, in the Brazilian Cerrados, when an efficient symbiosis is established, it is not necessary to apply starter N rates on soybean, even when cultivated under notillage systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen removal in soybean grains at harvest may exceed biological N2 fixation, particularly if grain yields are as high as typically achieved on "Terra Rossa" soils of Eastern Paraguay. Applying N fertilizer or coating seeds with rhizobial inoculants that enhance nodulation may represent a way of balancing the N budget. However, the effects of such treatments appear to be highly site-specific. The objective of this study was to examine the effects of N application (N) and rhizobial inoculation (I) on nodulation, N accumulation and soybean yields in Eastern Paraguay. Field experiments were conducted in two consecutive soybean seasons. Dry conditions in the first year delayed sowing and reduced plant number m-2 and pod number plant-1. Grain yields were generally below 2 t ha-1 but the +N+I treatment increased yields by about 75%. In the second year favorable conditions resulted in yields of around 4 t ha-1 and the treatments had no effect. Nitrogen accumulation was higher in the first year and could therefore not explain the observed yield differences between years and treatment combinations. The positive effect of the +N+I treatment in year one was associated with a more rapid root growth which could have reduced susceptibility to intermittent drought stress. Nodule biomass decreased between flowering and pod setting stages in the +I treatment whereas further increases in nodule biomass in the -I treatment may have led to competition for assimilates between nodules and developing pods. Based on these preliminary results we conclude that N application and seed inoculation can offer short-term benefits in unfavorable years without negative effects on yield in favorable years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of all nutrients, N has the strongest effect on grass growth and an adequate N fertilization can reduce the time required for the formation of high-quality mats. This study aimed to evaluate the influence of N fertilization on Bermuda grass sod production and quality. The experiment was conducted in an area of commercial sod production, in Capela do Alto, state of São Paulo. Cynodon dactylon (Pers) L., known as Bermuda grass, was evaluated in a randomized complete block design with five treatments and four replications. Treatments consisted of five N rates: 0, 150, 300, 450 and 600 kg ha-1. Increasing N applications to Bermuda grass increased the soil cover rate, reducing the time required for mat formation. The accumulation of rhizome + root + stolon dry matter was highest at a rate of 354 kg ha-1 N and the mat resistance to breakage at a rate of 365 kg ha-1 N. Nitrogen rates between 354 and 365 kg ha-1 increased mat resistance and consequently the suitability for postharvest handling, tending to improve the efficiency in the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of sewage sludge in Brazilian agriculture was regulated by the resolution no. 375 Conama, in 2006. However, there is a lack of research to adequate the mineral N and P fertilizer doses to be applied in agricultural fields treated with this residue. In a field experiment, the effects of application rates of sewage sludge and mineral N and P fertilizers on the productivity and technical characteristics of the cane-plant and first ratoon (residual effect) crops were evaluated. Four doses of sewage sludge (0, 3.6, 7.2 and 10.8 t ha-1, dry base), of N (0, 30, 60 and 90 kg ha-1) and of P2O5 (0, 60, 120 and 180 kg ha-1) were combined in a factorial and laid out on randomized block design, a with two replications. To evaluate the residual effect of the sludge, 120 kg ha-1 N and 140 kg ha-1 of K2O were applied in all plots. Sludge application at cane planting, with or without N and/or P fertilizer increased the stalk yield from 84 up to 118 t ha-1, with no alteration in the sugarcane quality, compared with the application of NPK fertilizer alone, resulting in a stalk yield of 91 t ha-1. The study of the response surface for stalk yield on lowfertility soil was the basis for a recommendation of mineral N and P fertilizer doses for sugarcane implantation as related to sewage sludge application rates. It was also concluded that a sludge application of 10.8 t ha-1, which is the sludge dose established based on the N criterion according to the resolution Conama nº 375, could a) reduce the use of mineral N by 100 % and of P2O5 by 30 %, with increments of 22 % in stalk yield, as a direct effect of sludge application to cane plant crop, and b) increase the stalk yield in the second harvest (first ratoon) by up to 12 % and sugar yield by up to 11 %, by the residual effect of sludge application to sugar cane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great difficulty of incorporation of N fertilizers into the "green sugarcane" system causes concern and since urea is the most commonly used source, there is the risk of loosing NH3 through volatilization. For this reason, a field experiment was undertaken (in a Hapludox Typic) with the objective of evaluating the agronomic efficiency of ammonium chloride on stubble of the second ratoon (SP89 1115), as well as its residual effect on the subsequent cycle (third ratoon). The experimental design was randomized blocks with four replications. Treatments consisted of three N rates (60, 120 and 180 kg ha-1 N) in the form of NH4Cl, in addition to a control treatment without the addition of N fertilizer. The ratoon cane of the second cutting was harvested in November 2006 and the treatments were applied in December 2006. The second ratoon was harvested mechanically in November 2007 and in December 2007, 450 kg ha-1 of the NPK mixture 20-05-19 was applied, providing 90, 22 and 86 kg ha-1 N, P2O5 and K2O, respectively, for the purpose of evaluating the effect of residual-N from the treatments implanted in December 2006. An increase in the rates of N-NH4Cl had a positive effect on the leaf concentrations of P, Mg and S. Stalk yield (MSS - Mg ha-1 of sugarcane stalks) and sugar (MSH - Mg ha-1 of sucrose) in the November 2006 harvest responded linearly to the increase of N doses in the form of NH4Cl. In relation to the effect of residual-N in the 2007/2008 harvest, it was observed, in general, that the concentrations of macronutrients in the sugarcane leaf +1 were within the range considered adequate in the state of São Paulo, Brazil. The residual-N of the NH4Cl doses resulted in a significant reduction in stalk (MSS) and sugar (MSH) production. It may be concluded that the NH4Cl source at a dose of 120 kg ha-1 N in ratoon fertilization of the second cutting was agronomically efficient, presenting, however, less efficiency of residual-N in the subsequent cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.