53 resultados para Nitrogen and phosphorous loading
Resumo:
The goal of this research was evaluated the effects of potassium and nitrogen fertilization on the plum (Prunus salicina) fresh fruit quality and after cold storage. The experiment was carried out in a five year-old plum orchard 'Reubennel', located at Araucaria County, Parana State, Southern Brazil, in a Haplumbrept Soil. Potassium fertilizer was applied at 55 and 110 kg/ha/year of K2O, as KCl. Nitrogen fertilizer was applied at 40, 80, 120, 160 and 200 kg/ha/year of N, as urea. It was used a split-plot design in a factorial scheme (2x5). One hundred plum fruits were harvested from each plot, in the same day, when 25 to 50% of the peel presented yellow-reddish color. At harvest and after 17, 27 and 37 days of storage at 0 ± 0.5 ºC, the flesh firmness, the total soluble solids, and the titratable acidity were assessed. Fresh fruit quality was affected by N application, with the best results obtained by applying 40 kg/ha/year of N. The N and K rate of 40 and 110 kg/ha/year, respectively, kept superior fruit quality during the storage. 'Reubennel' cold storage can not exceed 27 days. Fresh and stored 'Reubennel' plum fruit qualities depend on the N and K fertilizer rates.
Resumo:
The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.
Resumo:
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
Resumo:
The Atlantic Forest on the slopes of Serra do Mar around Cubatão (São Paulo, Brazil) has been affected by massive emissions of pollutants from the local growing industrial complex. The effects of air pollution on the amounts of leaf nitrogen, total soluble phenols and total tannins of Tibouchina pulchra Cogn., a common species in the area of Cubatão, were investigated, as well as the possible influence of the altered parameters on the leaf area damaged by herbivores. Fully expanded leaves were collected at two sites: the valley of Pilões river (VP), characterized by a vegetation virtually not affected by air pollution and taken as a reference; and valley of Mogi river (VM), close to the core region of the industrial complex, and severely affected by air pollution. No differences were observed for any parameters between samples collected in the summer and winter in both sites. On the other hand, compared to VP, individuals growing in VM presented higher amounts of nitrogen and lower amounts of total soluble phenols and total tannins, as well as higher percentages of galls per leaf and higher leaf area lost to herbivores. Regression analysis revealed that the increase in leaf area lost to herbivores can be explained by the increase of the content of nitrogen and decrease in the contents of total soluble phenols and total tannins. Although significant, the coefficients of explanation found were low for all analyses, suggesting that other biotic or abiotic factors are likely to influence leaf attack by herbivores.
Resumo:
Potassium and nitrogen are the elements present in the highest percentage in the onion dry matter. The objective of this experiment was to evaluate yield and post-harvest conservation of Vale Ouro IPA-11 onion cultivar regarding to nitrogen and potassium levels. The experiment was carried out in Petrolina-PE, Brazil, from June to September 2009. The experimental design was a completely randomized block in a 4 x 3 factorial design, composed of four nitrogen levels (0, 60, 120 and 180 kg ha-1) and three potassium levels (0, 90 and 180 kg ha-1) with three replications. The highest yield of commercial bulbs was achieved at an estimated N level of 172.6 kg ha-1. The lowest yield of noncommercial bulbs was estimated at N level of 147.0 kg ha-1. Lower percentage of smaller bulbs (class 2) were obtained by increasing levels of N x K, with a quadratic effect at the dose of 90 kg ha-1 K2O and minimum production point with 127.6 kg N ha-1 (20.3%). Regarding larger caliber bulbs (class 4), linear effects were found both in the absence and for the level of 90 kg ha-1 of K2O as levels of N were increased. When the highest level of 180 kg ha-1 K2O was applied, the level of 92.8 kg ha-1 of N was estimated as the one that would promote the highest bulb yield of this class (35.4%), and 5.3% was found in the lack of potassium fertilization.
Resumo:
The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.
Resumo:
This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.
Resumo:
Brazil is the world’s largest orange producer; however, part of this production is lost during postharvest. This loss can be minimized by controlling incidence of physical damage throughout the harvest and loading operations. Impacts can negatively modify quantitative and qualitative fruits aspects. The main goal of this study was to measure the impact magnitude in two types of harvest (manual and detachment) and during all steps from picking into bags until loading for transport to the processing industry and additionally evaluating, in laboratory, the physico-chemical quality of the fruit subjected to various impacts, similar to those found in the field. In order to evaluate the impact magnitude, an instrumented sphere was used (760 mm, Techmark, Inc, USA). The following physico-chemical parameters were evaluated during 6-days of storage: weight loss, soluble solids contents, titratable acidity, ascorbic acid content, pH, firmness and peel color. The greatest impacts were observed during harvest, during the detachment practice, and when loading and unloading from bulk storage, with average acceleration values between 249.5 and 531.52G. The impact incidence in oranges were responsible for reducing the soluble solids, titratable acidity, ascorbic acid and weight by to 5.5%; 8.7%; 4.6% and 0.5%, respectively, compared to the control. Impacts during harvest and the various pre-industry manipulation steps must be controlled as they interfere in postharvest quality and physiology of ‘Valência’ oranges.
Resumo:
The variation in nitrogen use strategies and photosynthetic pathways among vascular epiphyte families was addressed in a white-sand vegetation in the Brazilian Central Amazon. Foliar nitrogen and carbon concentrations and their isotopic composition (δ15N and δ13C, respectively) were measured in epiphytes (Araceae, Bromeliaceae and Orchidaceae) and their host trees. The host tree Aldina heterophylla had higher foliar N concentration and lower C:N ratio (2.1 ± 0.06% and 23.6 ± 0.8) than its dwellers. Tree foliar δ15N differed only from that of the orchids. Comparing the epiphyte families, the aroids had the highest foliar N concentration and lowest C:N ratios (1.4 ± 0.1% and 34.9 ± 4.2, respectively). The orchids had more negative foliar δ15N values (-3.5 ± 0.2) than the aroids (-1.9 ± 0.7) and the bromeliads (-1.1 ± 0.6). Within each family, aroid and orchid taxa differed in relation to foliar N concentrations and C:N ratios, whereas no internal variation was detected within bromeliads. The differences in foliar δ15N observed herein seem to be related to the differential reliance on the available N sources for epiphytes, as well as to the microhabitat quality within the canopy. In relation to epiphyte foliar δ13C, the majority of epiphytes use the water-conserving CAM-pathway (δ13C values around -17), commonly associated with plants that live under limited and intermittent water supply. Only the aroids and one orchid taxon indicated the use of C3-pathway (δ13C values around -30).
Resumo:
Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.
Resumo:
ABSTRACT The efficiency of nitrogen fertilizer in corn is usually low, negatively affecting plant nutrition, the economic return, and the environment. In this context, a variable rate of nitrogen, prescribed by crop sensors, has been proposed as an alternative to the uniform rate of nitrogen traditionally used by farmers. This study tested the hypothesis that variable rate of nitrogen, prescribed by optical sensor, increases the nitrogen use efficiency and grain yield as compared to uniform rate of nitrogen. The following treatments were evaluated: 0; 70; 140; and 210 kg ha-1 under uniform rate of nitrogen, and 140 kg ha -1 under variable rate of nitrogen. The nitrogen source was urea applied on the soil surface using a distributor equipped with the crop sensor. In this study, the grain yield ranged from 10.2 to 15.5 Mg ha-1, with linear response to nitrogen rates. The variable rate of nitrogen increased by 11.8 and 32.6% the nitrogen uptake and nitrogen use efficiency, respectively, compared to the uniform rate of nitrogen. However, no significant increase in grain yield was observed, indicating that the major benefit of the variable rate of nitrogen was reducing the risk of environmental impact of fertilizer.
Resumo:
Coccidioidomycosis is an emerging fungal disease in Brazil; adequate maintenance and authentication of Coccidioides isolates are essential for research into genetic diversity of the environmental organisms, as well as for understanding the human disease. Seventeen Coccidioides isolates maintained under mineral oil since 1975 in the Instituto de Medicina Tropical de São Paulo (IMTSP) culture collection, Brazil, were evaluated with respect to their viability, morphological characteristics and genetic features in order to authenticate these fungal cultures. Only five isolates were viable after almost 30 years, showing typical morphological characteristics, and sequencing analysis using Coi-F and Coi-R primers revealed 99% identity with Coccidioides genera. These five isolates were then preserved in liquid nitrogen and sterile water, and remained viable after two years of storage under these conditions, maintaining the same features.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
Host part selection by ovipositing females of Ascia monuste (Godart, 1919) (Lepidoptera, Pieridae) on kale (Brassica oleracea var. acephala) was determined in greenhouse and field. Performance of offspring (larval period, efficiency of food utilization, number of eggs/female and others) was investigated under laboratory conditions. In the field, the number of A. monuste egg clutches on the apical and medium parts of kale leaves was greater than on the basal part. In greenhouse, A. monuste exhibited a strong preference for the apical part of kale leaves for ovipositing. The best results on food utilization indices, pupal mass and female wing size were obtained with the leaf apical part. This part of kale leaves exhibited the highest nitrogen and protein concentration and the smallest water content, when compared to the other leaf parts. However, the apical part of the leaves seems not to provide ovipositing females with enough protection against birds, making them easy preys in the field. We suggest that good relationship between oviposition preference and performance of offspring was hindered by predation in field conditions.