60 resultados para Neuromuscular electrical stimulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite its ancient use as a therapeutic tool to treat several ailments, acupuncture still faces the challenge of scrutiny by Western science both in terms of its efficacy and in terms of the characterization of its effects and mechanisms of actions underlying these effects. We investigated under well-controlled and carefully characterized conditions the influence of electrical stimulation of acupuncture points ST-36 (Zusanli) and SP-6 (Sanyinjiao) on the myoelectric activity of the small intestine of 38 adult male Wistar rats. Electrical recordings obtained by means of four electrodes chronically implanted in the small intestine were used to assess the effects of acupuncture (electroacupuncture stimulation set at 2 Hz, intermittent stimulation, 1 V, for 30 min). Immobilization of the animals was associated with a consistent decrease (-8 ± 7%) in the myoelectric activity of the small intestine as measured by means of the root mean square. Conversely, acupuncture was able to significantly increase (overshoot) this activity compared to baseline (+44 ± 7%). In contrast, immobilized animals subjected to sham acupuncture had only modest (nonsignificant) increases in myoelectric activity (+9 ± 6%). Using carefully controlled conditions we confirmed previous noncontrolled studies on the ability of acupuncture to alter intestinal motility. The characterization of the topographic and temporal profiles of the effects observed here represents a basis for future dissection of the physiological and pharmacological systems underlying these effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impaired baroreflex sensitivity in diabetes is well described and has been attributed to autonomic diabetic neuropathy. In the present study conducted on acute (10-20 days) streptozotocin (STZ)-induced diabetic rats we examined: 1) cardiac baroreflex sensitivity, assessed by the slope of the linear regression between phenylephrine- or sodium nitroprusside-induced changes in arterial pressure and reflex changes in heart rate (HR) in conscious rats; 2) aortic baroreceptor function by means of the relationship between systolic arterial pressure and aortic depressor nerve (ADN) activity, in anesthetized rats, and 3) bradycardia produced by electrical stimulation of the vagus nerve or by the iv injection of methacholine in anesthetized animals. Reflex bradycardia (-1.4 ± 0.1 vs -1.7 ± 0.1 bpm/mmHg) and tachycardia (-2.1 ± 0.3 vs -3.0 ± 0.2 bpm/mmHg) were reduced in the diabetic group. The gain of the ADN activity relationship was similar in control (1.7 ± 0.1% max/mmHg) and diabetic (1.5 ± 0.1% max/mmHg) animals. The HR response to vagal nerve stimulation with 16, 32 and 64 Hz was 13, 16 and 14% higher, respectively, than the response of STZ-treated rats. The HR response to increasing doses of methacholine was also higher in the diabetic group compared to control animals. Our results confirm the baroreflex dysfunction detected in previous studies on short-term diabetic rats. Moreover, the normal baroreceptor function and the altered HR responses to vagal stimulation or methacholine injection suggest that the efferent limb of the baroreflex is mainly responsible for baroreflex dysfunction in this model of diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The participation of opioids in the antinociceptive effect of electroacupuncture was evaluated in terms of nociception produced by thermal stimuli applied to the face of male Wistar rats, weighing 180-230 g. Electrical stimulation (bipolar and asymmetric square wave with 0.5 mA intensity for 20 min) of acupoint St36, located in the anterior tibial muscle 10 mm distal to the knee joint, induced antinociception in the present model, which was maintained for 150 min. Acupoint LI4, located in the junction of the first and second metacarpal bones, did not achieve antinociception at any frequency studied (5 Hz: 1.7 ± 0.1; 30 Hz: 1.8 ± 0.1; 100 Hz: 1.7 ± 0.1 vs 1.4 ± 0.2). The antinociception obtained by stimulation of acupoint St36 was only achieved when high frequency 100 Hz (3.0 ± 0.2 vs 1.0 ± 0.1) was used, and not with 5 or 30 Hz (1.2 ± 0.2 and 0.7 ± 0.1 vs 1.0 ± 0.1). The antinociceptive effect of acupuncture occurred by opioid pathway activation, since naloxone (1 and 2 mg/kg, subcutaneously) antagonized it (1.8 ± 0.2 and 1.7 ± 0.2 vs 3.0 ± 0.1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the present study was to determine the range of the influence of the baroreflex on blood pressure in chronic renal hypertensive rats. Supramaximal electrical stimulation of the aortic depressor nerve and section of the baroreceptor nerves (sinoaortic denervation) were used to obtain a global analysis of the baroreceptor-sympathetic reflex in normotensive control and in chronic (2 months) 1-kidney, 1-clip hypertensive rats. The fall in blood pressure produced by electrical baroreceptor stimulation was greater in renal hypertensive rats than in normotensive controls (right nerve: -47 ± 8 vs -23 ± 4 mmHg; left nerve: -51 ± 7 vs -30 ± 4 mmHg; and both right and left nerves: -50 ± 8 vs -30 ± 4 mmHg; P < 0.05). Furthermore, the increase in blood pressure level produced by baroreceptor denervation in chronic renal hypertensive rats was similar to that observed in control animals 2-5 h (control: 163 ± 5 vs 121 ± 1 mmHg; 1K-1C: 203 ± 7 vs 170 ± 5 mmHg; P < 0.05) and 24 h (control: 149 ± 3 vs 121 ± 1 mmHg; 1K-1C: 198 ± 8 vs 170 ± 5 mmHg; P < 0.05) after sinoaortic denervation. Taken together, these data indicate that the central and peripheral components of the baroreflex are acting efficiently at higher arterial pressure in renal hypertensive rats when the aortic nerve is maximally stimulated or the activity is abolished.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of body condition recovery (BC), carcass electrical stimulation (ES), aging time (AT 7 - 14 days), and calcium chloride injection on the meat characteristics of Santa Inês ewes (±5 years old) slaughtered immediately after weaning or after the body condition recovery period were studied. The carcass temperature, pH, shear force (SF), cooking loss (CL), meat color (L*, a*, b*), and meat tenderness were evaluated. A completely randomized design in a 2 × 2 × 2 × 3 (BC × ES × CaCl2 × AT) factorial arrangement was used, and the sensory tenderness data were analyzed using the table of Minimum Number of Correct Answers for the Duo-Trio test. The body condition recovery reduces the shear force in 8%, increasing their tenderness. Electrical stimulation reduced the shear force (24%) and did not change the other parameters. The aging time (7 or 14 days) decreased the shear force (18-26%), effect that was enhanced by electrical stimulation, and it darkened the meat reducing lightness (L*) and increasing yellowness (b*). The treatment with CaCl2 was the most effective in tenderizing meat by reducing the shear force ( 35%); increasing the cooking loss (4.5%); and increasing L* and b* lightening the meat. The sensory evaluation of tenderness corroborates the findings of the experimental evaluation regarding the effect of the treatment with CaCl2 on the meat quality improvement. It was concluded that the treatments improve meat characteristics achieving better results when applied together.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern society, thiamine deficiency (TD) remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive) neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI) were used as the control or unconditioned responses (UR). Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US) to a train of short (0.1 s) hyperpolarizing electrical substitutive conditioning stimuli (SCS) in the Peri-Kästchen (PK) neuron were measured in four parameters, i.e., peak numbers (N) and amplitude ()averaged from 120 responses, sum of these amplitudes (SAMP) and the highest peak amplitude (V) over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US), but not backward (US-SCS), association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI) for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rats, the nitric oxide (NO)-synthase pathway is present in skeletal muscle, vascular smooth muscle, and motor nerve terminals. Effects of NO were previously studied in rat neuromuscular preparations receiving low (0.2 Hz) or high (200 Hz) frequencies of stimulation. The latter frequency has always induced tetanic fade. However, in these previous studies we did not determine whether NO facilitates or impairs the neuromuscular transmission in preparations indirectly stimulated at frequencies which facilitate neuromuscular transmission. Thus, the present study was carried out to examine the effects of NO in rat neuromuscular preparations indirectly stimulated at 5 and 50 Hz. The amplitude of muscular contraction observed at the end (B) of a 10-s stimulation was taken as the ratio (R) of that obtained at the start (A) (R = B/A). S-nitroso-N-acetylpenicillamine (200 µM), superoxide dismutase (78 U/ml) and L-arginine (4.7 mM), but not D-arginine (4.7-9.4 mM), produced an increase in R (facilitation of neurotransmission) at 5 Hz. However, reduction in the R value (fade of transmission) was observed at 50 Hz. N G-nitro-L-arginine (8.0 mM) antagonized both the facilitatory and inhibitory effects of L-arginine (4.7 mM). The results suggest that NO may modulate the release of acetylcholine by motor nerve terminals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuromuscular effects of Bothrops neuwiedii pauloensis (jararaca-pintada) venom were studied on isolated chick biventer cervicis nerve-muscle preparations. Venom concentrations of 5-50 µg/ml produced an initial inhibition and a secondary increase of indirectly evoked twitches followed by a progressive concentration-dependent and irreversible neuromuscular blockade. At venom concentrations of 1-20 µg/ml, the responses to 13.4 mM KCl were inhibited whereas those to 110 µM acetylcholine alone and cumulative concentrations of 1 µM to 10 mM were unaffected. At venom concentrations higher than 50 µg/ml, there was pronounced muscle contracture with inhibition of the responses to acetylcholine, KCl and direct stimulation. At 20-24ºC, the venom (50 µg/ml) produced only partial neuromuscular blockade (30.7 ± 8.0%, N = 3) after 120 min and the initial inhibition and the secondary increase of the twitch responses caused by the venom were prolonged and pronounced and the response to KCl was unchanged. These results indicate that B.n. pauloensis venom is neurotoxic, acting primarily at presynaptic sites, and that enzyme activity may be involved in this pharmacological action.