22 resultados para Neural network systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC) to discuss the advances of the last decade in the neurobiology of emotion. Four basic questions were debated: 1) What are the most critical issues/questions in the neurobiology of emotion? 2) What do we know for certain about brain processes involved in emotion and what is controversial? 3) What kinds of research are needed to resolve these controversial issues? 4) What is the relationship between learning, memory and emotion? The focus was on the existence of different neural systems for different emotions and the nature of the neural coding for the emotional states. Is emotion the result of the interaction of different brain regions such as the amygdala, the nucleus accumbens, or the periaqueductal gray matter or is it an emergent property of the whole brain neural network? The relationship between unlearned and learned emotions was also discussed. Are the circuits of the former the underpinnings of the latter? It was pointed out that much of what we know about emotions refers to aversively motivated behaviors, like fear and anxiety. Appetitive emotions should attract much interest in the future. The learning and memory relationship with emotions was also discussed in terms of conditioned and unconditioned stimuli, innate and learned fear, contextual cues inducing emotional states, implicit memory and the property of using this term for animal memories. In a general way it could be said that learning modifies the neural circuits through which emotional responses are expressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.