28 resultados para Neural network based algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper studies based on Multilayer Perception Artificial Neural Network and Least Square Support Vector Machine (LS-SVM) techniques are applied to determine of the concentration of Soil Organic Matter (SOM). Performances of the techniques are compared. SOM concentrations and spectral data from Mid-Infrared are used as input parameters for both techniques. Multivariate regressions were performed for a set of 1117 spectra of soil samples, with concentrations ranging from 2 to 400 g kg-1. The LS-SVM resulted in a Root Mean Square Error of Prediction of 3.26 g kg-1 that is comparable to the deviation of the Walkley-Black method (2.80 g kg-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive spectrophotometric method is proposed for the simultaneous determination of protocatechuic acid and protocatechuic aldehyde. The method is based on the difference in the kinetic rates of the reactions of analytes with [Ag(NH3)2]+ in the presence of polyvinylpyrrolidone to produce silver nanoparticles. The data obtained were processed by chemometric methods using principal component analysis artificial neural network and partial least squares. Excellent linearity was obtained in the concentration ranges of 1.23-58.56 µg mL-1 and 0.08-30.39 µg mL-1 for PAC and PAH, respectively. The limits of detection for PAC and PAH were 0.039 and 0.025 µg mL-1, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to develop a classifier able to discriminate between healthy controls and dyspeptic patients by analysis of their electrogastrograms. Fifty-six electrogastrograms were analyzed, corresponding to 42 dyspeptic patients and 14 healthy controls. The original signals were subsampled, filtered and divided into the pre-, post-, and prandial stages. A time-frequency transformation based on wavelets was used to extract the signal characteristics, and a special selection procedure based on correlation was used to reduce their number. The analysis was carried out by evaluating different neural network structures to classify the wavelet coefficients into two groups (healthy subjects and dyspeptic patients). The optimization process of the classifier led to a linear model. A dimension reduction that resulted in only 25% of uncorrelated electrogastrogram characteristics gave 24 inputs for the classifier. The prandial stage gave the most significant results. Under these conditions, the classifier achieved 78.6% sensitivity, 92.9% specificity, and an error of 17.9 ± 6% (with a 95% confidence level). These data show that it is possible to establish significant differences between patients and normal controls when time-frequency characteristics are extracted from an electrogastrogram, with an adequate component reduction, outperforming the results obtained with classical Fourier analysis. These findings can contribute to increasing our understanding of the pathophysiological mechanisms involved in functional dyspepsia and perhaps to improving the pharmacological treatment of functional dyspeptic patients.