33 resultados para Network Centric Warfare


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to verify the potential of SNAP III (Scheduling and Network Analysis Program) as a support tool for harvesting and wood transport planning in Brazil harvesting subsystem definition and establishment of a compatible route were assessed. Initially, machine operational and production costs were determined in seven subsystems for the study area, and quality indexes, construction and maintenance costs of forest roads were obtained and used as SNAP III program input data. The results showed, that three categories of forest road occurrence were observed in the study area: main, secondary and tertiary which, based on quality index, allowed a medium vehicle speed of about 41, 30 and 24 km/hours and a construction cost of about US$ 5,084.30, US$ 2,275.28 and US$ 1,650.00/km, respectively. The SNAP III program used as a support tool for the planning, was found to have a high potential tool in the harvesting and wood transport planning. The program was capable of defining efficiently, the harvesting subsystem on technical and economical basis, the best wood transport route and the forest road to be used in each period of the horizon planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to analyze the impacts of the reservoir network within Pereira de Miranda - CE catchment (also called Pentecoste) over sediment transport and storage capacity of the system. The survey of the "damming" was carried out using satellite images. We identified 502 erosion units, derived from overlaying maps of the Universal Soil Loss Equation parameters, which allowed the estimation of localized erosion in the basin and identification of areas potentially generating sediment. In order to estimate silting in Pentecoste reservoir, different system structure scenarios were considered. An average erosion rate of 59 t ha-1year-1 was estimated. According to the model, the silting of Pentecoste reservoir may vary from 1.1 to 2.6% per decade, depending on the scenario considered. It is also observed that the reservoirs upstream can retain up to 58% of the sediment that would reach the Pentecoste reservoir. Very small reservoirs with a capacity of up to 100,000 m³, although representing only 1.83% of the system water availability, are able to retain almost 8% of total sediment produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adoption of a proper traceability system is being incorporated into meat production practices as a method of gaining consumer confidence. The various partners operating in the chain of meat production can be considered a social network, and they have the common goal of generating a communication process that can ensure each characteristic of the product, including safety. This study aimed to select the most appropriate meat traceability system “from farm to fork” that could be applied to Brazilian beef and pork production for international trade. The research was done in three steps. The first used the analytical hierarchy process (AHP) for selecting the best on-farm livestock traceability. In the second step, the actors in the meat production chain were identified to build a framework and defined each role in the network. In the third step, the selection of the traceability system was done. Results indicated that with an electronic traceability system, it is possible to acquire better connections between the links in the chain and to provide the means for managing uncertainties by creating structures that facilitate information flow more efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems related to the transport and manipulation of multiphase fluids concerns the existence of characteristic flow patterns and its strong influence on important operation parameters. A good example of this occurs in gas-liquid chemical reactors in which maximum efficiencies can be achieved by maintaining a finely dispersed bubbly flow to maximize the total interfacial area. Thus, the ability to automatically detect flow patterns is of crucial importance, especially for the adequate operation of multiphase systems. This work describes the application of a neural model to process the signals delivered by a direct imaging probe to produce a diagnostic of the corresponding flow pattern. The neural model is constituted of six independent neural modules, each of which trained to detect one of the main horizontal flow patterns, and a last winner-take-all layer responsible for resolving when two or more patterns are simultaneously detected. Experimental signals representing different bubbly, intermittent, annular and stratified flow patterns were used to validate the neural model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum myrianthum Cham. and Rhamnidium elaeocarpum Reiss.) were more efficient as dissipative structures than the late successional one (Cariniana legalis (Mart.) Kuntze), suggesting that the parameter deltaT (T ºCair - T ºCleaf) could be a simple tool in order to help the classification of successional classes of tropical trees. Our results indicated a pattern of network responses and autonomy changes under high irradiance. Considering the maintenance of daily CO2 assimilation, the tolerant species (C. myrianthum and R. elaeocarpum) to high irradiance trended to maintain stable the level of gas exchange network connectance and to increase the autonomy in relation to the environment. On the other hand, the late successional species (C. legalis) trended to lose autonomy, decreasing the network connectance of gas exchange. All species showed lower autonomy and higher network connectance of the photochemical apparatus under high irradiance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful implantation of the blastocyst depends on adequate interactions between the embryo and the uterus. The development of the embryo begins with the fertilized ovum, a single totipotent cell which undergoes mitosis and gives rise to a multicellular structure named blastocyst. At the same time, increasing concentrations of ovarian steroid hormones initiate a complex signaling cascade that stimulates the differentiation of endometrial stromal cells to decidual cells, preparing the uterus to lodge the embryo. Studies in humans and in other mammals have shown that cytokines and growth factors are produced by the pre-implantation embryo and cells of the reproductive tract; however, the interactions between these factors that converge for successful implantation are not well understood. This review focuses on the actions of interleukin-1, leukemia inhibitory factor, epidermal growth factor, heparin-binding epidermal growth factor, and vascular endothelial growth factor, and on the network of their interactions leading to early embryo development, peri-implantatory endometrial changes, embryo implantation and trophoblast differentiation. We also propose therapeutical approaches based on current knowledge on cytokine interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR,MAPK14, BCL2L1, KRT18,PTPN6, CASP3, TGFBR2,AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.