26 resultados para N2o
Resumo:
ABSTRACT Livestock urine and dung are important components of the N cycle in pastures, but little information on its effect on soil nitrous oxide (N2O) emissions is available. We conducted a short-term (39-day) trial to quantify the direct N2O-N emissions from sheep excreta on an experimental area of ryegrass pasture growing on a Typic Paleudult in southern Brazil. Four rates of urine-N (161, 242, 323, and 403 kg ha-1 N) and one of dung-N (13 kg ha-1 N) were applied, as well as a control plot receiving no excreta. The N2O-N emission factor (EF = % of added N released as N2O-N) for urine and dung was calculated, taking into account the N2O fluxes in the field, over a period of 39 days. The EF value of the urine and dung was used to estimate the emissions of N2O-N over a 90-day period of pasture in the winter under two grazing intensities (2.5 or 5.0 times the herbage intake potential of grazing lambs). The soil N2O-N fluxes ranged from 4 to 353 µg m-2h-1. The highest N2O-N fluxes occurred 16 days after application of urine and dung, when the highest soil nitrate content was also recorded and the water-filled pore space exceeded 60 %. The mean EF for urine was 0.25 % of applied N, much higher than that for dung (0.06 %). We found that N2O-N emissions for the 90-day winter pasture period were 0.54 kg ha-1 for low grazing intensity and 0.62 kg ha-1 for moderate grazing intensity. Comparison of the two forms of excreta show that urine was the main contributor to N2O-N emissions (mean of 36 %), whereas dung was responsible for less than 0.1 % of total soil N2O-N emissions.
Resumo:
O objetivo deste trabalho foi avaliar emissões de NO e N2O até cinco dias após a primeira fertilização de cobertura com uréia em milho, em Latossolo Vermelho argiloso distrófico, sob plantio convencional e direto. A adubação de cobertura foi de 60 kg ha-1 de N. O experimento foi conduzido na Embrapa Cerrados, Planaltina, DF, com delineamento de blocos ao acaso, com três repetições, sendo o terceiro cultivo de milho, em rotação com soja. Os fluxos de NO e N2O foram medidos em câmaras de PVC instaladas em cada parcela. Houve emissão alta de NO imediatamente após (5,4 ng N cm-2 h-1) e no terceiro dia (4,8 ng N cm-2 h-1) após aplicação de uréia e irrigação. Um dia após fertilização, a emissão de NO reduziu-se a 1,9 ng N cm-2 h-1, e cinco dias depois, alcançou 1,2 ng N cm-2 h-1. Os fluxos de N2O ficaram abaixo do limite de detecção de 0,6 ng N cm-2 h-1. Não houve diferença significativa entre os plantios convencional e direto quanto à emissão dos óxidos de nitrogênio.
Resumo:
O objetivo deste trabalho foi comparar as emissões de óxido nitroso (N2O) para a atmosfera depois da aplicação de dejetos líquidos de suínos, em plantio direto (PD) e preparo reduzido (PR) do solo. O delineamento experimental utilizado foi o de blocos inteiramente casualizados com cinco repetições. Os tratamentos consistiram na aplicação (40 m³ ha-1), ou não, de dejetos líquidos em PD e PR. As emissões de N2O foram medidas in situ depois da aplicação dos dejetos, por 28 dias. Os fluxos de N2O aumentaram com a aplicação dos dejetos e, em apenas 20% das avaliações realizadas, foram superiores no PD. As emissões de N2O relacionaram-se com o aumento do espaço poroso ocupado pela água. Quantidades acumuladas de N na forma de N2O, emitidas em 28 dias, representaram 0,20 e 0,25% do N total aplicado com os dejetos no PD e PR, respectivamente. Os resultados demonstram que a aplicação de dejetos líquidos de suínos em PD não aumenta a emissão acumulada de N2O em relação à aplicação em PR.
Resumo:
The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar) were evaluated in a sandy Albaqualf (90% of sand): 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
In Surface water concentrations of N2O were measured at 37 stations in Guanabara Bay and fluxes estimated across the air-sea interface. Concentrations averaged 8.2 ± 2.2 nmol L-1 and 90% of the stations showed supersaturation averaging 33%. N2O fluxes were estimated using a two-film model which is given by the product of the concentration difference across the film and the gas transfer coefficient (k w). Two parametrizations of k w were used which provided average fluxes of 0.3 and 3.0 µg N m-2 h-1. Flux measurements using floating chambers (not reported here) seem to agree with the upper limit of these estimates.
Resumo:
Nitrous oxide emissions from an activated sludge plant which serves a research institute in Rio de Janeiro city were estimated from six unit processes (grit tank, sand trap, aeration tank, secondary settling tank, sludge recirculation line and aerobic digester sludge tank) and also from the plant effluent. Total estimated annual flux was 3.2 x 10(4) g N2O yr-1 of which about 90% was from the aeration tank. Emission factors estimated from population served, wastewater flow and nitrogen load (conversion ratio) were 13 g N2O person-1 yr-1, 9.0 x 10-5 g N2O Lwastewater-1 and 0.14%.
Resumo:
Soil fluxes of N2O were determined over one year in montane tropical rainforest of southeastern Brazil with average annual rainfall of 2.8 m. Annual mean (± standard deviation) and median N2O fluxes were 3.0 ± 1.4 and 2.7 µg N m-2 h-1, respectively, is 5-10 times lower than mean values reported in literature for tropical rainforest soils in the Amazon basin. N2O fluxes varied spatially and seasonally, were about twice as high during summer as in winter, and significantly influenced by both monthly precipitation and soil temperature.
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1 corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.
Resumo:
AbstractThis study evaluates the chemical processes responsible for the nitrous oxide (N2O) and methane (CH4) fluxes in the managed pasture (PM) and unmanaged pasture (PNM). In addition, the impact of nitrogen fertilization on the N2O and CH4 fluxes was assessed. The experiments were conducted on three farms in Alta Floresta city in the state of Mato Grosso. Both regular and intensive samples were collected from PM, PNM, and forest areas for each of the properties. The gases were sampled using static chambers in the morning. Higher N2O fluxes were recorded in the PMs, whereas the CH4 fluxes showed no influence of nitrogen fertilization in both regular and intensive samples. Low fertilizer levels resulted in low N2O emissions.