22 resultados para Muscle strength.
Resumo:
Fitness improvement was used to compare morning with afternoon exercise periods for asthmatic children. Children with persistent moderate asthma (according to GINA criteria), 8 to 11 years old, were divided into 3 groups: morning training group (N = 23), afternoon training group (N = 23), and non-training group (N = 23). The program was based on twice a week 90-min sessions for 4 months. We measured the 9-min running distance, resting heart rate and abdominal muscle strength (sit-up number) before and after the training. All children took budesonide, 400 µg/day, and an on demand inhaled ß-agonist. The distance covered in 9 min increased (mean ± SEM) from 1344 ± 30 m by 248 ± 30 m for the morning group, from 1327 ± 30 m by 162 ± 20 m for the afternoon group, and from 1310 ± 20 m by 2 ± 20 m for the control group (P < 0.05 for the comparison of morning and afternoon groups with the control group by ANOVA and P > 0.05 for morning with afternoon comparison). The reduction of resting heart rate from 83 ± 1, 85 ± 2 and 86 ± 1 bpm was 5.1 ± 0.8 bpm in the morning group, 4.4 ± 0.8 bpm in the afternoon group, and -0.2 ± 0.7 bpm in the control group (P > 0.05 for morning with afternoon comparison and P < 0.05 versus control). The number of sit-ups in the morning, afternoon and control groups increased from 22.0 ± 1.7, 24.3 ± 1.4 and 23 ± 1.1 sit-ups by 9.8 ± 0.9, 7.7 ± 1.4, and 1.9 ± 0.7 sit-ups, respectively (P > 0.05 for morning with afternoon comparison and P < 0.05 versus control). No statistically significant differences were detected between the morning and afternoon groups in terms of physical training of asthmatic children.
Resumo:
We compared the effect of three different exercise programs on patients with chronic obstructive pulmonary disease including strength training at 50_80% of one-repetition maximum (1-RM) (ST; N = 11), low-intensity general training (LGT; N = 13), or combined training groups (CT; N = 11). Body composition, muscle strength, treadmill endurance test (TEnd), 6-min walk test (6MWT), Saint George's Respiratory Questionnaire (SGRQ), and baseline dyspnea (BDI) were assessed prior to and after the training programs (12 weeks). The training modalities showed similar improvements (P > 0.05) in SGRQ-total (ST = 13 ± 14%; CT = 12 ± 14%; LGT = 11 ± 10%), BDI (ST = 1.8 ± 4; CT = 1.8 ± 3; LGT = 1 ± 2), 6MWT (ST = 43 ± 51 m; CT = 48 ± 50 m; LGT = 31 ± 75 m), and TEnd (ST = 11 ± 20 min; CT = 11 ± 11 min; LGT = 7 ± 5 min). In the ST and CT groups, an additional improvement in 1-RM values was shown (P < 0.05) compared to the LGT group (ST = 10 ± 6 to 57 ± 36 kg; CT = 6 ± 2 to 38 ± 16 kg; LGT = 1 ± 2 to 16 ± 12 kg). The addition of strength training to our current training program increased muscle strength; however, it produced no additional improvement in walking endurance, dyspnea or quality of life. A simple combined training program provides benefits without increasing the duration of the training sessions.
Resumo:
Our objective was to determine whether anthropometric measurements of the midarm (MA) could identify subjects with whole body fat-free mass (FFM) depletion. Fifty-five patients (31% females; age: 64.6 ± 9.3 years) with mild/very severe chronic obstructive pulmonary disease (COPD), 18 smokers without COPD (39% females; age: 49.0 ± 7.3 years) and 23 never smoked controls (57% females; age: 48.2 ± 9.6 years) were evaluated. Spirometry, muscle strength and MA circumference were measured. MA muscle area was estimated by anthropometry and MA cross-sectional area by computerized tomography (CT) scan. Bioelectrical impedance was used as the reference method for FFM. MA circumference and MA muscle area correlated with FFM and biceps and triceps strength. Receiver operating characteristic curve analysis showed that MA circumference and MA muscle area cut-off points presented sensitivity and specificity >82% to discriminate FFM-depleted subjects. CT scan measurements did not provide improved sensitivity or specificity. For all groups, there was no significant statistical difference between MA muscle area [35.2 (29.3-45.0) cm²] and MA cross-sectional area values [36.4 (28.5-43.3) cm²] and the linear correlation coefficient between tests was r = 0.77 (P < 0.001). However, Bland-Altman plots revealed wide 95% limits of agreement (-14.7 to 15.0 cm²) between anthropometric and CT scan measurements. Anthropometric MA measurements may provide useful information for identifying subjects with whole body FFM depletion. This is a low-cost technique and can be used in a wider patient population to identify those likely to benefit from a complete body composition evaluation.
Resumo:
Sarcopenic obesity is the combination of reduced fat-free mass (FFM) and increased fat mass (FM) with advancing age but there is lack of clear criteria for its identification. The purposes of the present investigation were: 1) to determine the prevalence of postmenopausal women with reduced FFM relative to their FM and height, and 2) to examine whether there are associations between the proposed classification and health-related variables. A total of 607 women were included in this cross-sectional study and were separated into two subsets: 258 older women with a mean age of 66.8 ± 5.6 years and 349 young women aged 18-40 years (mean age, 29.0 ± 7.5 years). All volunteers underwent body composition assessment by dual-energy X-ray absorptiometry. The FFM index relative to FM and height was calculated and the cutoff value corresponded to two standard deviations below the mean of the young reference group. To examine the clinical significance of the classification, all older participants underwent measurements of quadriceps strength and cardiorespiratory fitness. Values were compared between those who were classified as low FFM or not, using an independent samples t-test and correlations were examined. The cutoff corresponded to a residual of -3.4 and generated a sarcopenic obesity prevalence of 19.8% that was associated with reduced muscle strength and aerobic fitness among the older participants. Also, the index correlated significantly with the health-related fitness variables. The results demonstrated reduced functional capacity for those below the proposed cutoff and suggested applicability of the approach as a definition for sarcopenic obesity.
Resumo:
Exercise intolerance due to impaired oxidative metabolism is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still uncertain whether L-carnitine supplementation is beneficial for patients with MM. The aim of our study was to investigate the effects of L-carnitine on exercise performance in MM. Twelve MM subjects (mean age±SD=35.4±10.8 years) with chronic progressive external ophthalmoplegia (CPEO) were first compared to 10 healthy controls (mean age±SD=29±7.8 years) before they were randomly assigned to receive L-carnitine supplementation (3 g/daily) or placebo in a double-blind crossover design. Clinical status, body composition, respiratory function tests, peripheral muscle strength (isokinetic and isometric torque) and cardiopulmonary exercise tests (incremental to peak exercise and at 70% of maximal), constant work rate (CWR) exercise test, to the limit of tolerance [Tlim]) were assessed after 2 months of L-carnitine/placebo administration. Patients with MM presented with lower mean height, total body weight, fat-free mass, and peripheral muscle strength compared to controls in the pre-test evaluation. After L-carnitine supplementation, the patients with MM significantly improved their Tlim (14±1.9 vs 11±1.4 min) and oxygen consumption ( V ˙ O 2 ) at CWR exercise, both at isotime (1151±115 vs 1049±104 mL/min) and at Tlim (1223±114 vs 1060±108 mL/min). These results indicate that L-carnitine supplementation may improve aerobic capacity and exercise tolerance during high-intensity CWRs in MM patients with CPEO.
Resumo:
The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt, phospho-Ser473Akt (p-Akt), p70S6K1, phospho-Thr389-p70S6K1(p-p70S6K1), mTOR, phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1 ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle.
Resumo:
Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE) seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power) and structural (hypertrophy and phenotypic changes) adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric) have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals) limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.