68 resultados para Molecular probe techniques
Resumo:
Currently there are several methods to extract bacterial DNA based on different principles. However, the amount and the quality of the DNA obtained by each one of those methods is highly variable and microorganism dependent, as illustrated by coagulase-negative staphylococci (CoNS) which have a thick cell wall that is difficult to lyse. This study was designed to compare the quality and the amount of CoNS DNA, extracted by four different techniques: two in-house protocols and two commercial kits. DNA amount and quality determination was performed through spectrophotometry. The extracted DNA was also analyzed using agarose gel electrophoresis and by PCR. 267 isolates of CoNS were used in this study. The column method and thermal lyses showed better results with regard to DNA quality (mean ratio of A260/280 = 1.95) and average concentration of DNA (), respectively. All four methods tested provided appropriate DNA for PCR amplification, but with different yields. DNA quality is important since it allows the application of a large number of molecular biology techniques, and also it's storage for a longer period of time. In this sense the extraction method based on an extraction column presented the best results for CoNS.
Resumo:
The introduction of molecular biology techniques, especially of DNA analysis, for human identification is a recent advance in legal medicine. Substantial effort has continuously been made in an attempt to identify cadavers and human remains after wars, socio-political problems and mass disasters. In addition, because of the social dynamics of large cities, there are always cases of missing people, as well as unidentified cadavers and human remains that are found. In the last few years, there has also been an increase in requests for exhumation of human remains in order to determine genetic relationships in civil suits and court action. The authors provide an extensive review of the literature regarding the use of this new methodology for human identification of ancient or recent bones.
Resumo:
Facilitated and improved by advances in molecular biology, techniques for the immunodiagnosis of schistosomiasis, including assays based on the detection of antigens circulating in the serum and/or excreted in the urine, have now reached the stage of multi-centre trials. There is a need to complement parasitological techniques as some national programmes are becoming increasingly succesful in establishng control of the disease and the classical approach frequently fails to reveal low-intensity infection. Epidemiological survey teams in some areas have tentatively started to use serology and their experience indicates that antibody detection suffies in eradicated or controlled areas with low expected prevalence but that detection of circulating antigens is needed for assessment of the incidence of infection or reinfection in areas recently brought under control. Before reagents and procedures can be recommended for routine use of national control programmes, the assays must be standardized with sera from clinically well-characterized patients in geographically defined regions, hence emphasizing the need for a reference serum bank. Implementation of serological testing, carried out by nationsl public health laboratories using standardized testing systems, would permit valid comparisons between different areas providing support for decisions regarding national health polices.
Resumo:
Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR) amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.
Resumo:
We collected and analyzed 500 samples of human milk, from five Brazilian cities (100 from each) to detect methicillin-resistant strains of Staphylococcus aureus (MRSA) producing enterotoxins. We found 57 strains of MRSA, and the mecA gene, responsible for resistance, was detected in all of them using a specific molecular probe. We examined 40 strains for the presence of four enterotoxins, after selecting a subset that included all strains from each region, except for the largest sample, from which 10 were randomly selected. Among these two presented enterotoxin B, and growth in human colostrum and trypicase soy broth. After 5 h of incubation at 37°C, population sizes were already higher than 9.4 x 105 UFC/ml and enterotoxin was released into culture medium and colostrum. Our results stress the importance of hygiene, sanitary measures, and appropriate preservation conditions to avoid the proliferation of S. aureus in human milk.
Resumo:
The susceptibility to penicillin of 111 Neisseria meningitidis strains was assessed by the agar-dilution procedure and serosubtypes were determined by a whole-cell enzyme-linked immunoassay using monoclonal antibodies reagents. Thirty-five isolates showed reduced sensitivity to penicillin (MIC > or = 0.1 mg/l and <= 1 mg/l) and no resistant strains were detected. The most common phenotype was B:4:P1.15 (77.5%) and a rising trend of non-typeable and non-subtypeable strains was detected. The increase in levels of minimal inhibitory concentrations of meningococci to penicillin gives cause for concern and the increase in non-typeable and non-subtypeable isolation demand the use of molecular biology techniques for their typing.
Resumo:
This study focuses on the geographic distribution of the snail of the genus Biomphalaria and evaluates its infectivity by Schistosoma mansoni in 5264 specimens collected in the municipality of Juiz de Fora, Minas Gerais, Brazil. Of the 31 locations studied, 6 were reservoirs, 11 rudimentary holding ponds, 7 irrigation ditches, 5 lakes, 1 ornamental pond, and 1 waterfall. Intermediate hosts were found only in the rudimentary ponds and ditches, which were 100% positive. Using morphological and molecular analysis techniques, B. tenagophila, B. peregrina, and B. straminea were identified. This is the first report of B. stramínea in the municipality, and evaluation of its infective potential revealed susceptibility of 25.4%. Although we did not find specimens of Biomphalaria infected by S. mansoni, the data obtained indicate the presence of intermediate hosts, especially in the irrigation ditches in Juiz de Fora, and their proximity to contaminated areas.
Resumo:
One hundred years since the discovery of Chagas disease associated with Trypanosoma cruzi infection, growing attention has focused on understanding the evolution in parasite-human host interaction. This interest has featured studies and results from paleoparasitology, not only the description of lesions in mummified bodies, but also the recovery of genetic material from the parasite and the possibility of analyzing such material over time. The present study reviews the evidence of Chagas disease in organic remains excavated from archeological sites and discusses two findings in greater detail, both with lesions suggestive of chagasic megacolon and confirmed by molecular biology techniques. One of these sites is located in the United States, on the border between Texas and Mexico and the other in state of Minas Gerais, in the Brazilian cerrado (savannah). Dated prior to contact with Europeans, these results confirm that Chagas disease affected prehistoric human groups in other regions outside the Andean altiplanos and other transmission areas on the Pacific Coast, previously considered the origin of T. cruzi infection in the human host.
Resumo:
Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper understanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust comparative studies of insect sensory function and cognition.
Resumo:
The qualitative and quantitative losses caused by stored product insects are of great concern, and since there is only a few active ingredients available for their control it is very important to have a frequent insect resistance monitoring. The objective of this research is to evaluate combination of bioassays and molecular marker techniques to detect insecticide resistance in stored product beetles. The Coleoptera species used for the tests were Sitophilus oryzae (L.) (Curculionidae), Rhyzopertha dominica (F.) (Bostrichidae) and Oryzaephilus surinamensis (L.) (Silvanidae). For the bioassays it was used the impregnated filter paper technique, applying 1 mL of deltamethrin (K-Obiol 25 CE TM) using four concentrations and five replicates, including a control with solvent only. Ten adults of each species were liberated separately on each dish. The mortality was evaluated after 24 h and resistance determined by probit analysis. The samples used for the PCR-RAPD were either in vivo or preserved in 70% ethanol, kept in -18°C freezer. After extraction, quantification and DNA quality analysis, the 25 µL samples had the DNA amplified and tested with six primers. The bioassays showed a crescent mortality proportional to insecticide concentration. The resistance factor for R. dominica, S. zeamais and S. oryzae were: 2,2; 3,2 and 9,2, respectively, compared to the susceptible populations of each species. The PCR-RAPD analysis revealed bands which indicate inter and intraspecific variability in the populations, but it was not possible to correlate them to resistance. The association of bioassay and PCR-RAPD represents a precise and valuable tool for resistance management of stored product insects, but more populations and primers should be tested.
Resumo:
The Annonaceae includes cultivated species of economic interest and represents an important source of information for better understanding the evolution of tropical rainforests. In phylogenetic analyses of DNA sequence data that are used to address evolutionary questions, it is imperative to use appropriate statistical models. Annonaceae are cases in point: Two sister clades, the subfamilies Annonoideae and Malmeoideae, contain the majority of Annonaceae species diversity. The Annonoideae generally show a greater degree of sequence divergence compared to the Malmeoideae, resulting in stark differences in branch lengths in phylogenetic trees. Uncertainty in how to interpret and analyse these differences has led to inconsistent results when estimating the ages of clades in Annonaceae using molecular dating techniques. We ask whether these differences may be attributed to inappropriate modelling assumptions in the phylogenetic analyses. Specifically, we test for (clade-specific) differences in rates of non-synonymous and synonymous substitutions. A high ratio of nonsynonymous to synonymous substitutions may lead to similarity of DNA sequences due to convergence instead of common ancestry, and as a result confound phylogenetic analyses. We use a dataset of three chloroplast genes (rbcL, matK, ndhF) for 129 species representative of the family. We find that differences in branch lengths between major clades are not attributable to different rates of non-synonymous and synonymous substitutions. The differences in evolutionary rate between the major clades of Annonaceae pose a challenge for current molecular dating techniques that should be seen as a warning for the interpretation of such results in other organisms.
Resumo:
Rendu-Osler-Weber syndrome or hereditary hemorrhagic telangiectasia is an autosomal dominant vascular disease involving multiple systems whose main pathological change is the presence of abnormal arteriovenous communications. Most common symptoms include skin and mucosal telangiectasias, epistaxis, gastrointestinal, pulmonary and intracerebral bleeding. The key imaging finding is the presence of visceral arteriovenous malformations. The diagnosis is based on clinical criteria and can be confirmed by molecular biology techniques. Treatment includes measures for management of epistaxis, as well as surgical excision, radiotherapy and embolization of arteriovenous malformations, with emphasis on endovascular treatment. The present pictorial essay includes a report of three typical cases of this entity and a literature review.
Resumo:
In general, molecular modeling techniques applied in medicinal chemistry have been static and drug based. However the active site geometry and the intrinsic flexibility of both receptor and ligand are fundamental properties for molecular recognition and drug action. As a consequence, the use of dynamic models to describe the ligand-receptor complex is becoming a more common procedure. In this work we discuss the relevance of considering the receptor structure in medicinal chemistry studies as well as the flexibility of the ligand-receptor complex.
Resumo:
Since the last decade, the combined use of chemometrics and molecular spectroscopic techniques has become a new alternative for direct drug determination, without the need of physical separation. Among the new methodologies developed, the application of PARAFAC in the decomposition of spectrofluorimetric data should be highlighted. The first objective of this article is to describe the theoretical basis of PARAFAC. For this purpose, a discussion about the order of chemometric methods used in multivariate calibration and the development of multi-dimensional methods is presented first. The other objective of this article is to divulge for the Brazilian chemical community the potential of the combination PARAFAC/spectrofluorimetry for the determination of drugs in complex biological matrices. For this purpose, two applications aiming at determining, respectively, doxorrubicine and salicylate in human plasma are presented.
Resumo:
The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.