19 resultados para Microonde Telerilevamento Satellite Meteorologia Nubi Precipitazioni Remote-sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orbital remote sensing in the microwave electromagnetic region has been presented as an important tool for agriculture monitoring. The satellite systems in operation have almost all-weather capability and high spatial resolution, which are features appropriated for agriculture. However, for full exploration of these data, an understanding of the relationships between the characteristics of each system and agricultural targets is necessary. This paper describes the behavior of backscattering coefficient (sigma°) derived from calibrated data of Radarsat images from an agricultural area. It is shown that in a dispersion diagram of sigma° there are three main regions in which most of the fields can be classified. The first one is characterized by low backscattering values, with pastures and bare soils; the second one has intermediate backscattering coefficients and comprises well grown crops mainly; and a third one, with high backscattering coefficients, in which there are fields with strong structures causing a kind of double bounce effect. The results of this research indicate that the use of Radarsat images is optimized when a multitemporal analysis is done making the best use of the agricultural calendar and of the dynamics of different cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for low subjectivity area estimates has increased the use of remote sensing for agricultural monitoring and crop yield prediction, leading to more flexibility in data acquisition and lower costs comparing to traditional methods such as census and surveys. Low spatial resolution satellite images with higher frequency in image acquisition have shown to be adequate for cropland mapping and monitoring in large areas. The main goal of this study was to map the Summer crops in the State of Paraná, Brazil, using 10-day composition of NDVI SPOT Vegetation data for 2005/2006, 2006/2007 and 2007/2008 cropping seasons. For this, a supervised digital classification method with Parallelepiped algorithm in multitemporal RGB image composites was used, in order to generate masks of Summer cultures for each 10-day composition. Accuracy assessment was performed using Kappa index, overall accuracy and Willmott's concordance index, resulting in good levels of accuracy. This methodology allowed the accomplishment, with free and low resolution data, of the mapping of Summer cultures at State level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soybean is important to the economy of Brazil, so the estimation of the planted area and the production with higher antecedence and reliability becomes essential. Techniques related to Remote Sensing may help to obtain this information at lower cost and less subjectivity in relation to traditional surveys. The aim of this study is to estimate the planted area with soybean culture in the crop of 2008/2009 in cities in the west of the state of Paraná, in Brazil, based on the spectral dynamics of the culture and through the use of the specific system of analysis for images of Landsat 5/TM satellite. The obtained results were satisfactory, because the classification supervised by Maximum Verisimilitude - MaxVer along with the techniques of the specific system of analysis for satellite images has allowed an estimate of soybean planted area (soybean mask), obtaining values ​​of the metrics of Global Accuracy with an average of 79.05% and Kappa Index over 63.50% in all cities. The monitoring of a reference area was of great importance for determining the vegetative phase in which the culture is more different from the other targets, facilitating the choice of training samples (ROIs) and avoiding misclassifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.