21 resultados para Meningococcal septicaemia
Resumo:
The incidence of invasive meningococcal disease (IMD) before (1984-1988) and after (1989-1994), a nationwide intervention with VA-MENGOC-BC vaccination started in 1989, was compared. The prevaccination period incidence density (ID> 8.8/ 105 year-person) was higher than the postvaccination ID (ID< 6.5/ 105 year-person). The percentage proportional differences from the start to the end of each period of ID in the vaccinal period was higher (87%) than the prevaccinal (37%) with significant differences among vaccinated groups (< 25 years old). A break-point (Chow test) was confirmed by the decrease in the ID between 1989 and 1990 in children under 1 year old, 5-9, 10-14, 15-19 and 50-54 years. Comparison of ID using maps showed a decrease in IMD in all municipalities during the postvaccination period. These findings support the epidemiological impact of VA-MENGOC-BC vaccination in the reduction of IMD morbidity.
Resumo:
Immediate prevention of meningococcal disease relies in part on the prompt treatment with antibiotics of household and other close contacts of cases; however intervention with effective vaccination relies on identification of serogroup-causing strains. Parenteral antibiotic for patient with suspected meningococcal disease before hospital admission is currently recommended. Laboratory standard methods are hindered by failure to detect bacteria by this medical approach to improve patient prognosis. We assessed two polymerase chain reaction (PCR) assays to detect (crgA) and define the serogroups (siaD, orf-2, and ctrA) of Neisseria meningitidis in 120 cerebrospinal fluid (CSF) samples from positive cases (culture or antigen detection or direct smear). The PCR sensitivity for the identification of N. meningitidis was 100% (95% confidence interval, CI, 96-100%) compared to a sensitivity of 46% for culture (95% CI 37-55%), 61% for latex agglutination test (95% CI 52-70%), and 68% for Gram stain (95% CI 59-76%); PCR specificity was 97% (95% CI 82-100%). PCR correctly identified the serogroups A, B, C, W135, Y, and X in CSF samples with a sensitivity of 88% (95% CI 80-93%); the primer sets were 100% specific. The introduction of PCR-based assays shall increase laboratory confirmed cases, consequently enhancing surveillance of meningococcal disease.
Resumo:
Neisseria meningitidis retains its ability to cause endemic and hiperendemic disease in human population living in any environment, as well as localized outbreaks and massive epidemics in civilians and military personnel. In Rio de Janeiro it has been reported in the 1990s as prolonged outbreak of serogroup B and at least one epidemic of serogroup C was well defined, both demanding quick action by the Public Health authorities. We report here the emergence of serogroup W135 meningococcal disease causing endemic and case cluster in Rio de Janeiro during the first years of this new century.
Resumo:
Genetic variation in immune response is probably involved in the progression of sepsis and mortality in septic patients. However, findings in the literature are sometimes conflicting or their significance is uncertain. Thus, we investigated the possible association between 12 polymorphisms located in the interleukin-6 (IL6), IL10, TLR-2, Toll-like receptor-4 (TLR-4), tumor necrosis factor-α and tumor necrosis factor-β (lymphotoxin α - LTA) genes and sepsis. Critically ill patients classified with sepsis, severe sepsis and septic shock and 207 healthy volunteers were analyzed and genotyped. Seven of the nine polymorphisms showed similar distributions in allele frequencies between patients and controls. Interestingly, our data suggest that the IL10-819 and TLR-2 polymorphisms may be potential predictors of sepsis.
Resumo:
We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR) assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.
Resumo:
Serogroup B Neisseria meningitidis (MenB) is a major cause of invasive disease in early childhood worldwide. The only MenB vaccine available in Brazil was produced in Cuba and has shown unsatisfactory efficacy when used to immunize millions of children in Brazil. In the present study, we compared the specific functional antibody responses evoked by the Cuban MenB vaccine with a standard vaccine against diphtheria (DTP: diphtheria, tetanus, pertussis) after primary immunization and boosting of mice. The peak of bactericidal and opsonic antibody titers to MenB and of neutralizing antibodies to diphtheria toxoid (DT) was reached after triple immunization with the MenB vaccine or DTP vaccine, respectively. However, 4 months after immunization, protective DT antibody levels were present in all DTP-vaccinated mice but in only 20% of the mice immunized against MenB. After 6 months of primary immunization, about 70% of animals still had protective neutralizing DT antibodies, but none had significant bactericidal antibodies to MenB. The booster doses of DTP or MenB vaccines produced a significant antibody recall response, suggesting that both vaccines were able to generate and maintain memory B cells during the period studied (6 months post-triple immunization). Therefore, due to the short duration of serological memory induced by the MenB vaccine (VA-MENGOC-BC® vaccine), its use should be restricted to outbreaks of meningococcal disease.