44 resultados para Mannose 6-phosphate
Resumo:
The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.
Resumo:
Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L) for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH), phosphorylase, alkaline phosphatase (ALP), acid phosphatase (AcP) were assessed in different tissues (liver, muscle and gills). Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05) time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita.
Resumo:
Isozyme patterns and their genetic control in three Centrosema species are described. Seven isozymatic systems (aspartate aminotransferase, glucose-6-phosphate isomerase, phosphoglucomutase, anodal peroxidase, malate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase) were studied in 18 populations and several breeding lines of C. acutifolium, C. brasilianum and C. pubescens, using starch gel electrophoresis techniques. All systems, except glucose-6-phosphate isomerase, are described for the first time in these species. A total of 17 isozyme loci were scored; this represents the largest set of Mendelian loci known up to now in Centrosema species. Isozyme polymorphism and variability within and between populations and species were relatively high and allowed discrimination among species
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.
Resumo:
The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK) by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.
Resumo:
In mammals, hexokinase (HK) is strategically located at the outer membrane of mitochondria bound to the porin protein. The mitochondrial HK is a crucial modulator of apoptosis and reactive oxygen species generation. In plants, these properties related to HK are unknown. In order to better understand the physiological role of non-cytosolic hexokinase (NC-HK) in plants, we developed a purification strategy here described. Crude extract of 400 g of maize roots (230 mg protein) contained a specific activity of 0.042 µmol G6P min-1 mg PTN-1. After solubilization with detergent two fractions were obtained by DEAE column chromatography, NC-HK 1 (specific activity = 3.6 µmol G6P min-1 mg PTN-1 and protein recovered = 0.7 mg) and NC-HK 2. A major purification (yield = 500-fold) was obtained after passage of NC-HK 1 through the hydrophobic phenyl-Sepharose column. The total amount of protein and activity recovered were 0.04 and 18%, respectively. The NC-HK 1 binds to the hydrophobic phenyl-Sepharose matrix, as observed for rat brain HK. Mild chymotrypsin digestion did not affect adsorption of NC-HK 1 to the hydrophobic column as it does for rat HK I. In contrast to mammal mitochondrial HK, glucose-6-phosphate, clotrimazole or thiopental did not dissociate NC-HK from maize (Zea mays) or rice (Oryza sativa) mitochondrial membranes. These data show that the interaction between maize or rice NC-HK to mitochondria differs from that reported in mammals, where the mitochondrial enzyme can be displaced by modulators or pharmacological agents known to interfere with the enzyme binding properties with the mitochondrial porin protein.
Resumo:
Leishmania braziliensis is a causative agent of American Cutaneous Leishmaniasis (ACL). The 034-JCG strain, isolated from a patient from the northern region of Paraná State, Brazil, was cultivated in Blood Agar Base medium, lyophilized and submitted to phenol-water extraction. The extract was treated with RNase I. The carbohydrate containing-antigen (Ag-CHO) was immunogenic to rabbits and showed at least a fraction with some negative charge at pH 8.2. This antigen showed cross-reactivity with the phenol-water extract of the growth medium used for the culture of promastigotes and with the surface antigens of promastigotes. Its composition is: 24.3% of total sugars, from which 11.2% of galactose, 7.5% of mannose and 5.6% of ribose. Protein content was 5.4% and phosphate 18.5%. The antigenic activity was maintained after: repeated freezing-thawing; lyophilization; heating at 100ºC for 30 minutes; treatment with RNase, trichloroacetic acid and sodium metaperiodate. The precipitin line obtained is Periodic Acid Schiff positive. The application of the Ag-CHO in counterimmunoelectrophoresis reaction for the immunodiagnosis of ACL showed 60% sensitivity, and no cross-reaction with the five sera of Chagas' disease patients tested. The use of this antigen in a more sensitive technique, with more samples of sera, may improve these results.
Resumo:
Diagnostic and parasite characterization and identification studies were carried out in human patients with cutaneous leishmaniasis lesions in Santiago del Estero, Northern Province of Argentina. Diagnostic procedures were biopsies of lesions for smears and inoculations in hamster, needle aspirations of material from ulcers for "in vitro" cultures. Immunodiagnostic techniques applied were IFAT-IgG and Montenegro skin test. Primary isolation of eight stocks of leishmanial parasites was achieved from patients with active lesions. All stocks were biologically characterized by their behaviour in hamster, measurements of amastigote and promastigotes and growth "in vitro". Eight stocks were characterized and identified at species level by their reactivity to a cross-panel of sub-genus and specie-specific Monoclonal Antibodies through an Indirect Immunofluorescence technique and a Dot-ELISA. We conclude from the serodeme analysis of Argentina stocks that: stocks MHOM/AR/92/SE-1; SE-2; SE-4; SE-8; SE-8-I; SE-30; SE-34 and SE-36 are Leishmania (Viannia) braziliensis. Three Leishmania stocks (SE-1; SE-2 and SE-30) did not react with one highly specie-specific Monoclonal Antibody (Clone: B-18, Leishmania (Viannia) braziliensis marker) disclosing two serodeme group patterns. Five out of eight soluble extracts of leishmanial promastigotes were electrophoresed on thin-layer starch gels and examined for the enzyme MPI, Mannose Phosphate Isomerase; MDH, Malate Dehydrogenase; 6PGD, 6 Phosphogluconate Dehydrogenase; NH, Nucleoside Hydrolase, 2-deoxyinosinc as substrate; SOD, Superoxide Dismutase; GPI, Glucose Phosphate Isomerase and ES, Esterase. From the isoenzyme studies we concluded that stocks: MHOM/AR/92/SE-1; SE-2; SE-4; SE-8 and SE-8-I are isoenzymatically Leishmania (Viannia) braziliensis. We need to analyze more enzymes before assigning them to a braziliensis zymodeme.
Resumo:
INTRODUCTION: Little is known about the early events in the interaction between Paracoccidioides brasiliensis and its host. To understand the effect of carbohydrates in the interaction between the fungus and epithelial cell in culture, we analyzed the influence of different carbohydrate solutions on the adhesion of P. brasiliensis yeast cells to CCL-6 cells in culture. METHODS: Fungal cells were cultivated with the epithelial cell line, and different concentrations of D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine, D-galactosamine, sorbitol and fructose were added at the beginning of the experiment. Six hours after the treatment, the cells were fixed and observed by light microscopy. The number of P. brasiliensis cells that were adhered to the CCL-6 monolayer was estimated. RESULTS: The number of adhesion events was diminished following treatments with D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine and D-galactosamine as compared to the untreated controls. Sorbitol and fructose-treated cells had the same adhesion behavior as the observed in the control. P. brasiliensis propagules were treated with fluorescent lectins. The FITC-labeled lectins WGA and Con-A bound to P. brasiliensis yeast cells, while SBA and PNA did not. CONCLUSIONS: The perceptual of adhesion between P. brasiliensis and CCL-6 cells decreased with the use of D-mannose, N-acetyl-glucosamine and D-glucosamine. The assay using FITC-labeled lectins suggests the presence of N-acetyl-glucosamine, α-mannose and α-glucose on the P. brasiliensis cell surface. An enhanced knowledge of the mediators of adhesion on P. brasiliensis could be useful in the future for the development of more efficient and less harmful methods for disease treatment and control.
Resumo:
METHOD: Eighty patients were prospectively randomized for precolonoscopic cleansing either with 750 ml of 10% mannitol (Group M) or 180 ml of a sodium phosphate preparation (Group NaP). Laboratory examinations before and after preparation on all patients included hemoglobin, hematocrit, sodium, potassium, phosphorous, calcium and serum osmolarity. A questionnaire was used to assess undesirable side effects and patient tolerance to the solution. The quality of preparation was assessed by the endoscopist who was unaware of the solution employed. RESULTS: Statistically significant changes were verified in serum sodium, phosphorous, potassium and calcium between the two groups, but no clinical symptoms were observed. There were no significant differences in the frequency of side effects studied. Six of the eight patients in Group NaP who had taken mannitol for a previous colonoscopy claimed better acceptance of the sodium phosphate solution. The endoscopic-blinded trial reported excellent or good bowel preparation in 85% prepared with sodium phosphate versus 82.5% for mannitol (p=0.37). CONCLUSIONS: Quality of preparation and frequency of side effects was similar in the two solutions. The smaller volume of sodium phosphate necessary for preparation seems to be related to its favorable acceptance. Nevertheless, the retention of sodium and phosphate ions contraindicates the use of sodium phosphate in patients with renal failure, cirrhosis, ascites, and heart failure.
Resumo:
The current high price of KCl and great dependence on importation to satisfy the Brazilian demand indicate the need for studies that evaluate the efficiency of other K sources, particularly those based on domestic raw material. For this purpose, a greenhouse experiment was conducted with samples of a sandy clay loam Typic Haplustox, in a completely randomized 4 x 3 x 2 factorial design: four K rates (0, 60, 120, and 180 mg kg-1), three sources (potassium chloride (KCl), fused magnesium potassium phosphate (FMPP) and a mixture of 70 % FMPP + 30 % KCl) and two particle sizes (100 and 60 mesh), with three replications. Potassium fertilization resulted in significant increases in shoot dry matter production and in K concentrations, both in soil and plants. The K source and particle size had no significant effect on the evaluated characteristics. Potassium critical levels in the soil and the shoots were 1.53 mmol c dm-3 and 19.1 g kg-1, respectively.
Resumo:
The eutrophication of aquifers is strongly linked to the mobility of P in soils. Although P mobility was considered irrelevant in a more distant past, more recent studies have shown that P, both in organic (Po) and inorganic forms (Pi), can be lost by leaching and eluviation through the soil profile, particularly in less weathered and/or sandier soils with low P adsorption capacity. The purpose of this study was to determine losses of P forms by leaching and eluviation from soil columns. Each column consisted of five PVC rings (diameter 5 cm, height 10 cm), filled with two soil types: a clayey Red-Yellow Latosol and a sandy loam Red-Yellow Latosol, which were exposed to water percolation. The soils were previously treated with four P rates (as KH2PO4 ) to reach 0, 12.5, 25.0 and 50 % of the maximum P adsorption capacity (MPAC). The P source was homogenized with the whole soil volume and incubated for 60 days. After this period the soils were placed in the columns; the soil of the top ring was mixed with five poultry litter rates of 0, 20, 40, 80, and 160 t ha-1 (dry weight basis). Treatments consisted of a 4 x 5 x 2 factorial scheme corresponding to four MPAC levels, five poultry litter rates, two soils, with three replications, arranged in a completely randomized block design. Deionized water was percolated through the columns 10 times in 35 days to simulate about 1,200 mm rainfall. In the leachate of each column the inorganic P (reactive P, Pi) and organic P forms (unreactive P, Po) were determined. At the end of the experiment, the columns were disassembled and P was extracted with the extractants Mehlich-1 (HCl 0.05 mol L-1 and H2SO4 0.0125 mol L-1) and Olsen (NaHCO3 0.5 mol L-1; pH 8.5) from the soil of each ring. The Pi and Po fractions were measured by the Olsen extractant. It was found that under higher poultry litter rates the losses of unreactive P (Po) were 6.4 times higher than of reactive P (Pi). Both the previous P fertilization and increasing poultry litter rates caused a vertical movement of P down the soil columns, as verified by P concentrations extracted by Mehlich-1 and NaHCO3 (Olsen). The environmental critical level (ECL), i.e., the P soil concentration above which P leaching increases exponentially, was 100 and 150 mg dm-3 by Mehlich-1 and 40 and 60 mg dm-3 by Olsen, for the sandy loam and clay soils, respectively. In highly weathered soils, where residual P is accumulated by successive crops, P leaching through the profile can be significant, particularly when poultry litter is applied as fertilizer.
Resumo:
The increase of organic acids in soils can reduce phosphorus sorption. The objective of the study was to evaluate the competitive sorption of P and citrate in clayey and sandy loam soils, using a stirred-flow system. Three experiments were performed with soil samples (0-20 cm layer) of clayey (RYL-cl) and sandy loam (RYL-sl) Red Yellow Latosols (Oxisols). In the first study, the treatments were arranged in a 2 × 5 factorial design, with two soil types and five combinations of phosphorus and citrate application (only P; P + citrate; and citrate applied 7, 22, 52 min before P); in the second, the treatments were arranged in a 2 × 2 factorial design, corresponding to two soils and two forms of P and citrate application (only citrate and citrate + P); and in the third study, the treatments in a 2 × 2 × 6 factorial design consisted of two soils, two extractors (citrate and water) and six incubation times. In the RYL-cl and RYL-sl, P sorption was highest (44 and 25 % of P application, respectively), in the absence of citrate application. Under citrate application, P sorption was reduced in all treatments. The combined application of citrate and P reduced P sorption to 25.8 % of the initially applied P in RYL-cl and to 16.7 % in RYL-sl, in comparison to P without citrate. Citrate sorption in RYL-cl and RYL-sl was highest in the absence of P application, corresponding to 32.0 and 30.2 % of the citrate applied, respectively. With P application, citrate sorption was reduced to 26.4 and 19.7 % of the initially applied citrate in RYL-cl and RYL-sl, respectively. Phosphorus desorption was greater when citrate was used. Phosphorus desorption with citrate and water was higher in the beginning (until 24 h of incubation of P) in RYL-cl and RYL-sl, indicating a rapid initial phase, followed by a slow release phase. This suggests that according to the contact time of P with the soil colloids, the previously adsorbed P can be released to the soil solution in the presence of competing ligands such as citrate. In conclusion, a soil management with continuous input of organic acids is desirable, in view of their potential to compete for P sorption sites, especially in rather weathered soils.
Resumo:
The viability of small-scale heavy-metal waste immobilization into iron phosphate glasses was investigated. Several waste forms containing different amounts of heavy-ion wastes were evaluated (5%, 10%, 15%, 20%, 26%, 33%, 40% and 50% by mass) and their X-ray diffraction patterns revealed that no crystallization occurred in glasses with waste concentrations up to 26%. The dissolution rates for all of the reported glass compositions (ca. 10-8 g cm-2 min-1) are similar to those reported for the materials most commonly used for waste vitrification. Iron phosphate glasses thus proved to be very useful for the immobilization of heavy-metal wastes, exhibiting good contention and chemical durability comparable to that of borosilicate glasses.
Resumo:
In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 µM carbachol was used, the estimated IC50 value for kainate was 0.2 µM and the maximal inhibition of ~50% was obtained with 1 µM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 µM veratridine, but not 50 mM KCl, inhibited ~65% of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 ± 38.0 to 2044.5 ± 299.9 cpm/mg protein, retinal response decreased to 861.6 ± 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.