44 resultados para Manganese industry.
Resumo:
Systematic pig slurry application to crop soils may lead to the accumulation of heavy metals in regions with intensive pig raising. The aim of this study was to evaluate the accumulation of Cu, Zn and Mn in soils under systematic pig slurry application. For this purpose, soil samples were collected from two of the most representative watersheds of Santa Catarina where the predominant activity is pig raising. In each watershed, 12 properties were chosen to evaluate the different systems of pig husbandry (complete cycle (CC), farrowing (FaU) and finishing units (FiU)). Based on information of the producers, soil samples were collected in areas with and without systematic manure application. To determine the total Cu, Zn and Mn content in soils and manure, a methodology proposed by the Environmental Protection Agency of the United States (USEPA), method nº 3050B, was used. For the available heavy metal content, Cu and Zn was extracted with HCl 0.1 mol L-1 and Mn with KCl 1 mol L-1. Data were subjected to multivariate analysis, using the canonical discriminant analysis to identify the metals that best differentiate the soils studied within each swine housing system. Successive pig slurry applications cause an increase in Cu, Zn and Mn availability in the soil and this indicates the need for monitoring of the metal concentrations over time. The critical values of Cu in the soil can be reached and exceeded more rapidly than Zn. The results showed that the soil type may be one of the attribute underlying the determination of public policies in pig raising and waste management because soils such as Inceptisols were shown to be more prone to possible contamination since they may more rapidly reach total critical Cu levels.
Resumo:
Although silicon is not recognized as a nutrient, it may benefit rice plants and may alleviate the Mn toxicity in some plant species. The dry matter yield (root, leaf, sheaths and leaf blade) and plant architecture (angle of leaf insertion and leaf arc) were evaluated in rice plants grown in nutrient solutions with three Mn doses, with and without Si addition. The treatments were arranged in a 2 x 3 factorial [with and without (2 mmol L-1) Si; three Mn doses (0.5; 2.5 and 10 µmol L-1)], in a randomized block design with 4 replications. The experimental unit was a 4 L plastic vase with 4 rice (Metica-1 cultivar) plants. Thirty nine days after keeping the seedlings in the nutrient solution the plant dry matter yield was determined; the angle of leaf insertion in the sheath and the leaf arc were measured; and the Si and Mn concentrations in roots, sheaths and leaves were determined. The analysis of variance (F test at 5 and 1 % levels) and the regression analysis (for testing plant response to Mn with the Si treatments) were performed. The Si added to the nutrient solution increased the dry matter yield of roots, sheaths and leaf blades and also decreased the angle of leaf blade insertion into the sheath and the foliar arc in the rice plant. Additionally, it ameliorated the rice plant architecture which allowed an increase in the dry matter yield. Similarly, the addition of Mn to the solution improved the architecture of the rice plants with gain in dry matter yield. As Si was added to the nutrient solution, the concentration of Mn in leaves decreased and in roots increased thus alleviating the toxic effects of Mn on the plants.
Resumo:
Detrimental effects of glyphosate on plant mineral nutrition have been reported in the literature, particularly on Mn uptake and redistribution. However, in most of the experiments conducted so far glyphosate-susceptible plants were used. Effects of glyphosate on Mn absorption kinetics, accumulation, and distribution within the plant, as well as soybean response to Mn as affected by glyphosate were studied in three experiments. In the first experiment, in nutrient solution, the effect of glyphosate on soybean Mn uptake kinetic parameters (Imax, Km and Cmin) was determined. In a second experiment, also in nutrient solution, differential Mn accumulation and distribution were studied for a conventional soybean cultivar and its near-isogenic glyphosate-resistant counterpart as affected by glyphosate. In a third experiment, response of glyphosate-resistant soybean cultivars to Mn application was studied in the presence of glyphosate, in pots with Mn-deficient soil. Maximum Mn influx (Imax) was higher in the herbicide-resistant (GR) cultivar than in its conventional counterpart. Glyphosate applied to nutrient solution at low rates decreased Km and Cmin. A few days after herbicide treatment, RR soybean plants developed yellowish leaves, a symptom which, in the field, could be misinterpreted as Mn deficiency, but herbicide application had no effect on Mn uptake or distribution within the plant. In the soil experiment, soybean Mn uptake was increased by Mn application, with no effect of glyphosate. Under greenhouse conditions, there was no evidence of deleterious effects of glyphosate on Mn absorption, accumulation and distribution in the plant and on soybean cultivars response to Mn application.
Resumo:
The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay) and an Oxisol (clay). The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1), with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC) and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.
Resumo:
In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a) changes in the physical and chemical properties of an acidic soil and (b) pine tree development. The experiment was carried out in 2004 in Bocaina do Sul, Santa Catarina, consisting of the application of increasing dreg and lime rates to a Pinus taeda L. production area, on a Humic Cambisol, in a randomized block design with four replications and 10 x 10 m plots. The treatments consisted of levels of soil acidity amendments corresponding to the recommendations by the SMP method to reach pH 5.5 in the 0-20 cm layer, as follows: no soil amendment; dregs at 5.08 (1/4 SMP), 10.15 (1/2 SMP) and 20.3 Mg ha-1 (1 SMP); and lime at 8.35 (1/2 SMP) and 16.7 Mg ha-1 (1 SMP). Soil layers were sampled in 2010 for analyses of soil chemical and physical properties. The diameter at breast height of the 6.5 year old pine trees was also evaluated. Surface application of dregs improved soil chemical fertility by reducing acidity and increasing base saturation, similar to liming, especially in surface layers. Dregs, comparable to lime, reduced the degree of clay flocculation, but did not affect the soil physical quality. There was no effect of the amendments on increase in pine tree diameter. Thus, the alternative to raise the pH in forest soils to 5.5 with dregs is promising for the forestry sector with a view to dispose of the waste and increase soil fertility.
Resumo:
Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.
Resumo:
Eucalyptus Shoot Blight in the Vale do Rio Doce (ESBVRD) is an anomaly that leads to reduced growth and, in more extreme cases, to death of eucalyptus plants. Initially diagnosed in plantations in the region of the Vale do Rio Doce, in the State of Minas Gerais, Brazil, this problem has also been found in plantations in other regions of the country and even in other countries. Although the symptoms of this anomaly are well-known, its causes are not yet understood. The aim of this study was to evaluate the cause-effect relationship between accumulation of manganese (Mn) in eucalyptus clones and ESBVRD. Characterization of the environment in areas of greater occurrence of this problem in regard to soil, climate and fluctuation of the water table was undertaken in eucalyptus plantations of the Celulose Nipo-brasileira S.A. (Cenibra) company in the region of the Vale do Rio Doce. Plant tissues were sampled in two situations. In the first situation, diagnosis occurred in the initial phase of the anomaly in clones with differentiated tolerance to the problem; in the second situation, diagnosis was made in a single clone, considered to be sensitive, in two time periods - in the phase with the strong presence of symptoms and in the recovery phase, in areas of occurrence and in areas of escape from the problem. The most ESBVRD-sensitive clone showed much higher (4.8 times higher) leaf Mn contents than more tolerant clones. In plants with the anomaly, Mn leaf contents were greater than 3,070 mg kg-1, much greater than the quantity found in those without the anomaly (734 mg kg-1). In the period in which the symptoms began to wane, there was a sharp decline in leaf Mn contents, from 2,194 to 847 mg kg-1. Manganese content in the above ground part and plant litter (44.4 g ha-1) in the area of occurrence of the anomaly was three times greater than that found in these same components (14.1 g ha-1) in the area of absence of the symptom. Based on the evidence found, such as the existence of environmental conditions favorable to high Mn availability to the plants in the areas of greatest incidence of ESBVRD, greater uptake of Mn in sensitive clones and in plants with symptoms, and a synchronism between the intensity of symptoms of ESBVRD and leaf Mn contents, it may be inferred that temporary excess of Mn in eucalyptus plants is closely related to ESBVRD.
Resumo:
The objective of this work was to estimate the genetic variability level and distribution in Brazilian broodstocks of marine shrimp (Litopenaeus vannamei). Nine of the country's largest hatcheries were evaluated using codominant and highly polymorphic microsatellite markers. The results obtained from genotyping of ten microsatellite loci are indicative of genetic variability that is compatible with that found in wild populations of L. vannamei in Mexico and Central America. A possible explanation is the highly diversified and relatively recent origin of the available broodstocks. Bayesian analysis detected a signal for five founding populations. The distribution of genetic distances partially reflects geographical location, and this information will be useful for the creation of new broodstocks. Therefore, L. vannamei genetic variability among nine of the largest national hatcheries can be considered high.
Resumo:
World mango production is spread over 100 countries that produce over 34.3 million tons of fruit annually. Eighty percent of this production is based in the top nine producing nations that also consume upward of 90% of their production domestically. One to 2 percent of fruit is traded internationally in to markets in the European Community, USA, Arabian Peninsula and Asia. This paper outlines some of the recent research and development advances in mango breeding and genomics, rootstock development, disease management and harvest technologies that are influencing the production and quality of mango fruit traded domestically and internationally.
Resumo:
This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.
Resumo:
Effluents generated by the textile industry are of environmental concern because of the presence of dyes with complex molecular structure, which confer them recalcitrant characteristics. Indigo is one of the most widely used dyes within the textile sector and studies have suggested that edible fungi may be capable of its biodegradation. A textile effluent was mixed with sugarcane bagasse and inoculated with Pleurotus sajor-caju, the decolorization being evaluated after 14 days, when the process was observed. Enzymatic activities of laccase, peroxidase and manganese peroxidase were determined, the production of these ligninolytic enzymes being evident and a synergism among them being likely in the decolorizing process.
Resumo:
The ornamental rock industry generates huge amounts of wastes during the process of extraction and sawing of rock blocks. The ornamental rock powder waste is a non-biodegradable material, which represents the increase in environmental problem. The waste was collected from a granitic rock sawing plant located in Santo Antônio de Pádua, Rio de Janeiro. The chemical-environmental characterization and classification of the waste were done according to ABNT standards. The results showed that the granitic rock powder waste should be classified as Class II A - "No Inert", because of its high concentrations of lead, chrome, iron and manganese.
Resumo:
Wood is the main raw material used in the pulp and paper industry. It is a material that presents heterogeneous structure and complex composition, which results in a relatively resistant material to the biodegradation process. In the present review, we attempted to summarize the structural characteristics of wood and describe the chemical nature of its major components to, afterwards, comment about its biodegradation. The role of the enzyme manganese peroxidase in the lignin degradation by a selective white-rot fungus, Ceriporiopsis subvermispora, was highlighted.
Resumo:
The anode and the internal paste of spent Zn-C and alkaline batteries were leached with 2 mol L-1 H2SO4 at 80 ºC for 2 h. Solid/liquid ratio was 1/10 (g mL-1). The leachate was treated with Na2S in order to precipitate Hg, Cd and Pb. Zn was quantitatively isolated at pH 1,5-2 by adding Na2S. Mn can be precipitated at pH close to 7. Na2S may be replaced by oxalic acid. Zn precipitated at pH around 0, whereas Mn was quantitatively recovered at pH > 4. Acidity control is a critical parameter. Na2SO4 and carbon are the end products.