25 resultados para Mammalian cell expression system
Resumo:
This work is a literature review of PBTAs, the phenylbenzotriazoles generated from the reduction and chlorination of azo dyes. The PBTAs and the non- chlorinated PBTAs were isolated for the first time from river blue rayon organic extracts that showed high mutagenic activity in the Salmonella/microsome genotoxicity assay. To date, 8 PBTAs have been identified and beside their mutagenic activity in bacteria they cause genotoxic effects in fish and mammalian cell cultures. Due to the large number of textile dyeing facilities in Brazil, studies to determine them in the aquatic environment seem to be relevant.
Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids
Resumo:
Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use
Resumo:
The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%), the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.
Resumo:
DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.
Resumo:
The expression of sarcoplasmic reticulum SERCA1a Ca2+-ATPase wild-type and D351E mutants was optimized in yeast under the control of a galactose promoter. Fully active wild-type enzyme was recovered in yeast microsomal membrane fractions in sufficient amounts to permit a rapid and practical assay of ATP hydrolysis and phosphoenzyme formation from ATP or Pi. Mutant and wild-type Ca2+-ATPase were assayed for phosphorylation by Pi under conditions that are known to facilitate this reaction in the wild-type enzyme, including pH 6.0 or 7.0 at 25ºC in the presence of dimethylsulfoxide. Although glutamyl (E) and aspartyl (D) residue side chains differ by only one methylene group, no phosphoenzyme could be detected in the D351E mutant, even upon the addition of 40% dimethylsulfoxide and 1 mM 32Pi in the presence of 10 mM EGTA and 5 mM MgCl2. These results show that in the D351E mutant, increasing hydrophobicity of the site with inorganic solvent was not a sufficient factor for the required abstraction of water in the reaction of E351 with Pi to form a glutamylphosphate (P-E351) phosphoenzyme moiety. Mutation D351E may disrupt the proposed alignment of the reactive water molecule with the aspartylphosphate (P-D351) moiety in the phosphorylation site, which may be an essential alignment both in the forward reaction (hydrolysis of aspartylphosphate) and in the reverse reaction (abstraction of water upon formation of an aspartylphosphate intermediate).
Resumo:
The Period 3 and Clock genes are important components of the mammalian molecular circadian system. Studies have shown association between polymorphisms in these clock genes and circadian phenotypes in different populations. Nevertheless, differences in the pattern of allele frequency and genotyping distribution are systematically observed in studies with different ethnic groups. To investigate and compare the pattern of distribution in a sample of Asian and Caucasian populations living in Brazil, we evaluated two well-studied polymorphisms in the clock genes: a variable number of tandem repeats (VNTR) in PER3 and a single nucleotide polymorphism (SNP) in CLOCK. The aim of this investigation was to search for clues about human evolutionary processes related to circadian rhythms. We selected 109 Asian and 135 Caucasian descendants. The frequencies of the shorter allele (4 repeats) in the PER3 gene and the T allele in the CLOCK gene among Asians (0.86 and 0.84, respectively) were significantly higher than among Caucasians (0.69 and 0.71, respectively). Our results directly confirmed the different distribution of these polymorphisms between the Asian and Caucasian ethnic groups. Given the genetic differences found between groups, two points became evident: first, ethnic variations may have implications for the interpretation of results in circadian rhythm association studies, and second, the question may be raised about which evolutionary conditions shaped these genetic clock variations.
Resumo:
Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.
Resumo:
Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline (SG) or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals (CG) were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events.
Resumo:
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.
Resumo:
Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM) components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.