31 resultados para Male Breadwinner Model
Resumo:
Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.
Resumo:
Environmental xenoestrogens pose a significant health risk for all living organisms. There is growing evidence concerning the different susceptibility to xenoestrogens of developing and adult organisms, but little is known about their genotoxicity in pre-pubertal mammals. In the present study, we developed an animal model to test the sex- and age-specific genotoxicity of the synthetic estrogen diethylstilbestrol (DES) on the reticulocytes of 3-week-old pre-pubertal and 12-week-old adult BALB/CJ mice using the in vivo micronucleus (MN) assay. DES was administered intraperitoneally at doses of 0.05, 0.5, and 5 µg/kg for 3 days and animals were sampled 48, 72 and 96 h, and 2 weeks after exposure. Five animals were analyzed for each dose, sex, and age group. After the DES dose of 0.05 µg/kg, pre-pubertal mice showed a significant increase in MN frequency (P < 0.001), while adults continued to show reference values (5.3 vs 1.0 MN/1000 reticulocytes). At doses of 0.5 and 5 µg/kg, MN frequency significantly increased in both age groups. In pre-pubertal male animals, MN frequency remained above reference values for 2 weeks after exposure. Our animal model for pre-pubertal genotoxicity assessment using the in vivo MN assay proved to be sensitive enough to distinguish age and sex differences in genome damage caused by DES. This synthetic estrogen was found to be more genotoxic in pre-pubertal mice, males in particular. Our results are relevant for future investigations and the preparation of legislation for drugs and environmentally emitted agents, which should incorporate specific age and gender susceptibility.
Resumo:
Mechanical ventilation has been associated with organ failure in patients with acute respiratory distress syndrome. The present study examines the effects of tidal volume (V T) on renal function using two V T values (8 and 27 mL/kg) in anesthetized, paralyzed and mechanically ventilated male Wistar rats. Animals were randomized into two groups of 6 rats each: V T8 (V T, 8 mL/kg; 61.50 ± 0.92 breaths/min; positive end-expiratory pressure, 3.0 cmH2O; peak airway pressure (PAW), 11.8 ± 2.0 cmH2O), and V T27 (V T, 27 mL/kg; 33.60 ± 1.56 breaths/min; positive end-expiratory pressure, none, and PAW, 22.7 ± 4.0 cmH2O). Throughout the experiment, mean PAW remained comparable between the two groups (6.33 ± 0.21 vs 6.50 ± 0.22 cmH2O). For rats in the V T27 group, inulin clearance (mL·min-1·body weight-1) decreased acutely after 60 min of mechanical ventilation and even more significantly after 90 min, compared with baseline values (0.60 ± 0.05 and 0.45 ± 0.05 vs 0.95 ± 0.07; P < 0.001), although there were no differences between groups in mean arterial pressure or gasometric variables. In the V T8 group, inulin clearance at 120 min of mechanical ventilation remained unchanged in relation to baseline values (0.72 ± 0.03 vs 0.80 ± 0.05). The V T8 and V T27 groups did not differ in terms of serum thiobarbituric acid reactive substances (3.97 ± 0.27 vs 4.02 ± 0.45 nmol/mL) or endothelial nitric oxide synthase expression (94.25 ± 2.75 vs 96.25 ± 2.39%). Our results show that glomerular filtration is acutely affected by high tidal volume ventilation but do not provide information about the mechanism.
Resumo:
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.
Resumo:
Clinically relevant animal models capable of simulating traumatic hemorrhagic shock are needed. We developed a hemorrhagic shock model with male New Zealand rabbits (2200-2800 g, 60-70 days old) that simulates the pre-hospital and acute care of a penetrating trauma victim in an urban scenario using current resuscitation strategies. A laparotomy was performed to reproduce tissue trauma and an aortic injury was created using a standardized single puncture to the left side of the infrarenal aorta to induce hemorrhagic shock similar to a penetrating mechanism. A 15-min interval was used to simulate the arrival of pre-hospital care. Fluid resuscitation was then applied using two regimens: normotensive resuscitation to achieve baseline mean arterial blood pressure (MAP, 10 animals) and hypotensive resuscitation at 60% of baseline MAP (10 animals). Another 10 animals were sham operated. The total time of the experiment was 85 min, reproducing scene, transport and emergency room times. Intra-abdominal blood loss was significantly greater in animals that underwent normotensive resuscitation compared to hypotensive resuscitation (17.1 ± 2.0 vs 8.0 ± 1.5 mL/kg). Antithrombin levels decreased significantly in normotensive resuscitated animals compared to baseline (102 ± 2.0 vs 59 ± 4.1%), sham (95 ± 2.8 vs 59 ± 4.1%), and hypotensive resuscitated animals (98 ± 7.8 vs 59 ± 4.1%). Evidence of re-bleeding was also noted in the normotensive resuscitation group. A hypotensive resuscitation regimen resulted in decreased blood loss in a clinically relevant small animal model capable of reproducing hemorrhagic shock caused by a penetrating mechanism.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.
Resumo:
Dyslipidemia is related to the progression of atherosclerosis and is an important risk factor for acute coronary syndromes. Our objective was to determine the effect of rosuvastatin on myocardial necrosis in an experimental model of acute myocardial infarction (AMI). Male Wistar rats (8-10 weeks old, 250-350 g) were subjected to definitive occlusion of the left anterior descending coronary artery to cause AMI. Animals were divided into 6 groups of 8 to 11 rats per group: G1, normocholesterolemic diet; G2, normocholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days after AMI; G3, normocholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days before and after AMI; G4, hypercholesterolemic diet; G5, hypercholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days after AMI; G6, hypercholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days before and after AMI. Left ventricular function was determined by echocardiography and percent infarct area by histology. Fractional shortening of the left ventricle was normal at baseline and decreased significantly after AMI (P < 0.05 in all groups), being lower in G4 and G5 than in the other groups. No significant difference in fractional shortening was observed between G6 and the groups on the normocholesterolemic diet. Percent infarct area was significantly higher in G4 than in G3. No significant differences were observed in infarct area among the other groups. We conclude that a hypercholesterolemic diet resulted in reduced cardiac function after AMI, which was reversed with rosuvastatin when started 30 days before AMI. A normocholesterolemic diet associated with rosuvastatin before and after AMI prevented myocardial necrosis when compared with the hypercholesterolemic condition.
Resumo:
Ventilatory differences between rat strains and genders have been described but the morphology of the phrenic nerve has not been investigated in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. A descriptive and morphometric study of the phrenic nerves of male (N = 8) and female (N = 9) SHR, and male (N = 5) and female (N = 6) WKY is presented. After arterial pressure and heart rate recordings, the phrenic nerves of 20-week-old animals were prepared for epoxy resin embedding and light microscopy. Morphometric analysis performed with the aid of computer software that took into consideration the fascicle area and diameter, as well as myelinated fiber profile and Schwann cell nucleus number per area. Phrenic nerves were generally larger in males than in females on both strains but larger in WKY compared to SHR for both genders. Myelinated fiber numbers (male SHR = 228 ± 13; female SHR = 258 ± 4; male WKY = 382 ± 23; female WKY = 442 ± 11 for proximal right segments) and density (N/mm²; male SHR = 7048 ± 537; female SHR = 10355 ± 359; male WKY = 9457 ± 1437; female WKY = 14351 ± 1448) for proximal right segments) were significantly larger in females of both groups and remarkably larger in WKY than SHR for both genders. Strain and gender differences in phrenic nerve myelinated fiber number are described for the first time in this experimental model of hypertension, indicating the need for thorough functional studies of this nerve in male and female SHR.
Resumo:
Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues adjacent to large joints, resulting in joint mobility deficit. In order to determine which treatment techniques are more appropriate for such condition, experimental models of induced heterotopic bone formation have been proposed using heterologous demineralized bone matrix implants and bone morphogenetic protein and other tissues. The objective of the present experimental study was to identify a reliable protocol to induce HO in Wistar rats, based on autologous bone marrow (BM) implantation, comparing 3 different BM volumes and based on literature evidence of this HO induction model in larger laboratory animals. Twelve male Wistar albino rats weighing 350/390 g were used. The animals were anesthetized for blood sampling before HO induction in order to quantify serum alkaline phosphatase (ALP). HO was induced by BM implantation in both quadriceps muscles of these animals, experimental group (EG). Thirty-five days after the induction, another blood sample was collected for ALP determination. The results showed a weight gain in the EG and no significant difference in ALP levels when comparing the periods before and after induction. Qualitative histological analysis confirmed the occurrence of heterotopic ossification in all 12 EG rats. In conclusion, the HO induction model was effective when 0.35 mL autologous BM was applied to the quadriceps of Wistar rats.
Resumo:
The objective of the present study was to compare the effect of electroacupuncture (EA) and carprofen (CP) on postoperative incisional pain using the plantar incision (PI) model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po); PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36)); PI+EANP (EA applied to a non-acupoint region); PI+IMMO (immobilization only); PI (vehicle). In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen.
Resumo:
Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
Vascular calcification decreases compliance and increases morbidity. Mechanisms of this process are unclear. The role of oxidative stress and effects of antioxidants have been poorly explored. We investigated effects of the antioxidants lipoic acid (LA) and tempol in a model of atherosclerosis associated with elastocalcinosis. Male New Zealand white rabbits (2.5-3.0 kg) were fed regular chow (controls) or a 0.5% cholesterol (chol) diet+104 IU/day vitamin D2 (vitD) for 12 weeks, and assigned to treatment with water (vehicle, n=20), 0.12 mmol·kg-1·day-1 LA (n=11) or 0.1 mmol·kg-1·day-1 tempol (n=15). Chol+vitD-fed rabbits developed atherosclerotic plaques associated with expansive remodeling, elastic fiber disruption, medial calcification, and increased aortic stiffness. Histologically, LA prevented medial calcification by ∼60% and aortic stiffening by ∼60%. LA also preserved responsiveness to constrictor agents, while intima-media thickening was increased. In contrast to LA, tempol was associated with increased plaque collagen content, medial calcification and aortic stiffness, and produced differential changes in vasoactive responses in the chol+vitD group. Both LA and tempol prevented superoxide signals with chol+vitD. However, only LA prevented hydrogen peroxide-related signals with chol+vitD, while tempol enhanced them. These data suggest that LA, opposite to tempol, can minimize calcification and compliance loss in elastocalcionosis by inhibition of hydrogen peroxide generation.
Resumo:
The mechanisms of statins relieving the no-reflow phenomenon and the effects of single-dose statins on it are not well known. This study sought to investigate the effects of inflammation on the no-reflow phenomenon in a rabbit model of acute myocardial infarction and reperfusion (AMI/R) and to evaluate the effects of single-dose atorvastatin on inflammation and myocardial no-reflow. Twenty-four New Zealand white male rabbits (5-6 months old) were randomized to three groups of eight: a sham-operated group, an AMI/R group, and an atorvastatin-treated group (10 mg/kg). Animals in the latter two groups were subjected to 4 h of coronary occlusion followed by 2 h of reperfusion. Serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. The expression of interferon gamma (IFN-γ) in normal and infarcted (reflow and no-reflow) myocardial tissue was determined by immunohistochemical methods. The area of no-reflow and necrosis was evaluated pathologically. Levels of serum IL-6 were significantly lower in the atorvastatin group than in the AMI/R group (P<0.01). Expression of IFN-γ in infarcted reflow and no-reflow myocardial tissue was also significantly lower in the atorvastatin group than in the AMI/R group. The mean area of no-reflow [47.01% of ligation area (LA)] was significantly smaller in the atorvastatin group than in the AMI/R group (85.67% of LA; P<0.01). The necrosis area was also significantly smaller in the atorvastatin group (85.94% of LA) than in the AMI/R group (96.56% of LA; P<0.01). In a secondary analysis, rabbits in the atorvastatin and AMI/R groups were divided into two groups based on necrosis area (90% of LA): a small group (<90% of LA) and a large group (>90% of LA). There was no significant difference in the area of no-reflow between the small (61.40% of LA) and large groups (69.87% of LA; P>0.05). Single-dose atorvastatin protected against inflammation and myocardial no-reflow and reduced infarct size during AMI/R in rabbits. No-reflow was not dependent on the reduction of infarct size.
Resumo:
Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK) and L-arginine treatment both alone and in combination on blood pressure (BP), and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C) hypertension, 2K1C+ALSK (ALSK), 2K1C+L-arginine (L-arg), and 2K1C+ALSK+L-arginine (ALSK+L-arg) treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME) increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.