39 resultados para Machinery - design
Resumo:
The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.
Resumo:
Chagas disease control strategies strongly depend on the triatomine vector species involved in Trypanosoma cruzi transmission within each area. Here we report the results of the identification of specimens belonging to various species of Triatominae captured in Ecuador (15 species from 17 provinces) and deposited in the entomological collections of the Catholic University of Ecuador (Quito), Instituto Oswaldo Cruz (Brazil), the Natural History Museum London (UK), the London School of Hygiene and Tropical Medicine (UK), the National Institute of Hygiene (Quito), and the Vozandes Hospital (Quito). A critical review of published information and new field records are presented. We analysed these data in relation to the life zones where triatomines occur (11 life zones, excluding those over 2,200 m altitude), and provide biogeographical maps for each species. These records are discussed in terms of epidemiological significance and design of control strategies. Findings relevant to the control of the main vector species are emphasised. Different lines of evidence suggest that Triatoma dimidiata is not native to Ecuador-Peru, and that synanthropic populations of Rhodnius ecuadoriensis in southern Ecuador-northern Peru might be isolated from their sylvatic conspecifics. Local eradication of T. dimidiata and these R. ecuadoriensis populations might therefore be attainable. However, the presence of a wide variety of native species indicates the necessity for a strong longitudinal surveillance system.
Resumo:
Most of the Brazilian HIV-1 samples have been characterized based on the structural genes (env, gag and pol) and no data concerning the variability of the accessory genes such as nef have been available so far. Considering the role of the nef on virus biology and the inclusion of this region in some HIV/AIDS vaccine products under testing, the purpose of this study was to document the genetic diversity of the nef gene in third-four HIV-1 Brazilian samples previously subtyped based on the env C2-V3 region. Although only few non-subtype B samples have already been analyzed so far, the cytotoxic Tlymphocyte epitopes encoded in this region were relatively conserved among the subtypes, with some amino acid signatures mainly in the subtype C samples. Considering the increasing of the non-B HIV-1 subtypes worldwide, in special the subtype C, more data should be generated concerning the genetic and antigenic variability of these subtypes, as well as the study of the impact of such polymorphism in HIV/AIDS vaccine design and testing.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.
Resumo:
Leprosy will continue to be a public health problem for several decades. The World Health Organization (WHO) recommends that, for treatment purposes, leprosy cases be classified as either paucibacillary or multibacillary (MB). A uniform leprosy treatment regimen would simplify treatment and halve the treatment duration for MB patients. The clinical trial for uniform multidrug therapy (U-MDT) for leprosy patients (LPs) in Brazil is a randomised, open-label clinical trial to evaluate if the effectiveness of U-MDT for leprosy equals the regular regimen, to determine the acceptability of the U-MDT regimen and to identify the prognostic factors. This paper details the clinical trial methodology and patient enrolment data. The study enrolled 858 patients at two centres and 78.4% of participants were classified as MB according to the WHO criteria. The main difficulty in evaluating a new leprosy treatment regimen is that no reliable data are available for the current treatment regimen. Relapse, reaction and impaired nerve function rates have never been systematically determined, although reaction and impaired nerve function are the two major causes of nerve damage that lead to impairments and disabilities in LPs. Our study was designed to overcome the need for reliable data about the current treatment and to compare its efficacy with that of a uniform regimen.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosawere tested in silico against the Plasmodium falciparumCa2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.
Resumo:
Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
Analisa a abordagem do Sense-Making na busca e uso da informação.
Resumo:
Trata de estabelecer as características atuais de revistas de arquitetura, urbanismo, paisagismo e design publicados no Brasil para um possível enquadramento como periódicos científicos ou técnicos. Comenta uma metodologia corrente de avaliação de publicações científicas de outras áreas de conhecimento e contextualiza sua aplicação diante da natureza diversificada da produção científica da área de arquitetura e urbanismo.
Resumo:
The preparation of 2', 3'-di-O-hexanoyluridine (2) by a Candida antarctica B lipase-catalysed alcoholysis of 2', 3', 5'-tri-O-hexanoyluridine (1) was optimised using an experimental design. At 25 ºC better experimental conditions allowed an increase in the yield of 2 from 80% to 96%. In addition to the yield improvement, the volume reaction could be diminished in a factor of 5 and the reaction time significantly shortened.